0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

人工智能目前状况分析 距真正的人工智能还有一段距离

lviY_AI_shequ 2017-12-08 14:06 次阅读

1956年,人工智能概念首次被提出,之后经历了60年的浮沉起落,人工智能产业一直在曲折中前进,如今,人工智能已成为最炙手可热的产业之一。麦肯锡全球研究院就认为人工智能正在促进人类社会发生转变。这种转变将比工业革命“发生的速度快10倍,规模大300倍,影响几乎大3000倍。

如果说2016年是人工智能的新纪元,人们对于人工智能的探讨还是基于概念的探讨和前景的展望上,那么2017年则是人工智能如何落地的关键一年。

从广义上讲,人工智能的应用已经非常广泛,各大新闻客户端会根据你的阅读兴趣推送相关新闻、各大电商平台会根据你的购买习惯推送相关商品、几乎所有你浏览的网页所呈现的广告都与你的历史搜索相关……这些都可以称得上是人工智能。而且,与过去60年人工智能的发展主要集中在实验室里不同,新一轮的人工智能已经在诸多应用场景中发挥威力,应该说,新一轮的人工智能浪潮才刚刚开始。

云计算到大数据,人工智能已经具备了相对坚实的基础。其中,大数据称得上是人工智能赖以开展的生产资料,而云计算则是人工智能发展的生产工具。不过,从当下人工智能的发展现状看,大部分的人工智能还停留在大数据分析阶段,距离真正的人工智能还有一定的距离。

人工智能正在告别新一轮概念炒作

如果说60年前人工智能概念的提出,多少有些科幻的成份,那么,今天人工智能概念的再次火热却带有强烈的现实意义。从谷歌AlphaGo在围棋领域战胜人类选手后,人工智能开启了新一轮的发展热潮。与以往人工智能凭借强大的算法(穷举)战胜人类不同,在围棋领域,人工智能展现出了机器学习的能力。

于是,2016年被业界称为人工智能的新纪元,几乎所有的IT互联网企业,以及那些还在推动互联网+、数字化转型的传统企业,也开始寻求借助人工智能实现自身的转型升级,以人工智能为代表的新技术正在成为新的生产力。

不过,在2016年,企业对于人工智能的关注依旧停留在概念层面,也就是说,企业很清楚人工智能领域可能蕴含的机会,以及人工智能的应用给传统产业可能带来的冲击。但如何推动人工智能的落地,将这些设想变成现实依旧是一个难题。

在这一过程中,企业发现,云计算、大数据这两大技术正在人工智能的发展过程中扮演越来越重要的角色。云计算提供计算能力,起到了生产工具的角色;大数据提供数据基础,起到了生产资料的角色。

从技术发展的逻辑讲,人工智能从云计算、大数据的角度切入,再合适不过;但从应用角度讲,如何通过云计算、大数据的应用,实现人工智能,仍旧还需要很长的路要走。应该说,人工智能与以往的技术概念炒作路线完全一致,也在经历从过度神化走向落地。

而从行业应用的角度讲,那些天生对计算能力和数据要求较高的行业正在开启人工智能应用的大门。正如高通全球副总裁、创投董事总经理沈劲所说,人工智能已经进入下半场,下半场意味着其发展速度会比我们想象地快的多,人工智能已经能够迅速变革各个行业。这缘于人工智能所拥有的三大推动力:数据、网络、计算能力,它们各自都在以指数级的速度发展。

而高盛首席经济学家JanHatzius也表示,未来人工智能技术将会全面驱动生产力的提高,如同电力对各行各业的影响,人工智能将会进入到农业、金融、医疗、零售、能源等诸多行业中,机会巨大。

从大数据到机器学习 人工智能发展渐入佳境

尽管人工智能的新时代已经开启,但目前人工智能的发展和运用,还主要集中在大数据技术层面:通过对海量数据的分析,得出相应的数据规律,从而指导人们根据数据分析结果进行决策的优化,释放数据价值。正如创新工场CEO李开复曾讲到的那样,人工智能最初被使用到的场景就是大数据积累得比较好的场景。

因此,很多从事大数据分析的企业开始给自己贴上人工智能的标签,严格来说,这样做不免有蹭热点的嫌疑,却也合乎逻辑。如果把新一轮的人工智能发展重新界定,大数据技术的深入应用可以算作是人工智能的1.0时代。

基于对数据的分析、洞察数据的秘密,这里的主体依然是人,而并非机器。但机器学习、深度学习的出现,则让主体逐渐变成了机器,开始体现人工智能的真正意义。从人对数据分析到机器通过数据来学习,这样一个变迁的意义可谓深远,称得上是人工智能的2.0时代。

但从目前人工智能的发展现状看,只有很少的企业能够进阶到以机器学习为代表的人工智能2.0阶段。与大数据分析相比,机器学习的出现,则是在大数据分析的基础上,对算法不断优化,让机器能够借助这些算法持续提升大数据分析的能力。这里的算法,就像是人类赋予机器的智慧和能力,从“授之以鱼”到“授之以渔”。

从技术角度看,云计算、大数据到机器学习,人工智能的发展尽管迅速,但依然处在线性发展阶段。真正高阶的人工智能,则是机器自身具备数据收集、整理、分析的能力,并自主对算法进行调整和优化,自主做出判断和决策。这样的人工智能才称得上是人工智能的3.0时代,也更接近人们理想中的人工智能。

而从应用角度看,李开复也给出了自己的判断:未来10—15年人工智能将按照以下三个阶段发展:首先,人工智能会在数据化程度高的行业发生;其次,随着感知、传感器机器人的发展,人工智能会延展到实体世界;最终人工智能将穿透到个人场景。

人工智能下一个突破点:应用场景

不管是国际象棋,还是围棋或是德州扑克,人工智能在这类棋牌游戏中能否战胜人类,已经变得没有悬念。如果人工智能只能做到这些,这一新兴技术的魅力就会大打折扣。

事实也是如此,如今,人们对这类人机大战开始变得漠不关心,开始期望在几乎所有的工作和生活场景中应用这一新技术,就如同当年计算机、互联网出现之初一样。彼时,计算机的应用让人们进入无纸化的信息时代,而互联网的应用则让人们得以打破信息传输的边界,真正让世界变得更加互联互通。

从目前的态势看,人工智能所带来的革命性将远超计算机和互联网,因为它要做的是要代替,或者说部分代替人类的思考。比如,在医疗行业,医生的诊断能力很大程度上取决于这个医生个人的医疗水平、医疗经验。通过对病人各项指标的化验数据,那些经验丰富的医生可以做出更加准确的诊断,而那些年轻医生的准确性则要差很多。相比较而言,人工智能显然更具优势,因为它可以对所有相关病例数据进行分析,从而得出更加接近真相的诊断。

医疗显然是人工智能可以发光发亮的热门领域之一。人工智能类似的应用还可以推广到更多的场景中,比如金融、能源、交通,甚至是文艺创作等众多行业。人工智能给人们带来的,不仅是通过数据分析呈现其规律,帮助人们进行决策;而是规避人类被情绪、感情等因素的干扰,帮助人们做出更加合理的决策。

不过,相比较人工智能技术的演进,人工智能当下最重要的任务是如何普及到更多的应用场景中,并真正在这些场景中为人们所应用。人工智能需要不断获取新的数据、进行持续且深度的学习,“越用越灵”可以说是人工智能发展的关键。

而从目前市场应用的角度看,人工智能还只是在一些特殊的领域和特殊的地方试用而已,远远没有普及开来,也很难真正发挥其作用。从实验室到普及,人工智能显然还有一个相当长的路要走。

因此,现阶段人工智能的机会正更多集中在不同的应用场景上,而不只是实验室级别的应用。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 人工智能
    +关注

    关注

    1791

    文章

    47208

    浏览量

    238298
  • 机器学习
    +关注

    关注

    66

    文章

    8408

    浏览量

    132576
  • 大数据
    +关注

    关注

    64

    文章

    8884

    浏览量

    137409

原文标题:从实验室到生活,人工智能的路还有多远?

文章出处:【微信号:AI_shequ,微信公众号:人工智能爱好者社区】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    嵌入式和人工智能究竟是什么关系?

    了数据传输的压力,还提高了系统的响应速度。而在物联网中,嵌入式系统更是个核心的组成部分。通过将人工智能算法应用于物联网设备,我们可以实现对海量数据的智能分析,从而为各种应用场景提供精
    发表于 11-14 16:39

    《AI for Science:人工智能驱动科学创新》第6章人AI与能源科学读后感

    幸得好书,特此来分享。感谢平台,感谢作者。受益匪浅。 在阅读《AI for Science:人工智能驱动科学创新》的第6章后,我深刻感受到人工智能在能源科学领域中的巨大潜力和广泛应用。这
    发表于 10-14 09:27

    AI for Science:人工智能驱动科学创新》第4章-AI与生命科学读后感

    阅读这章后,我深感人工智能与生命科学的结合正引领着场前所未有的科学革命,以下是我个人的读后感: 1. 技术革新与生命科学进步 这章详细阐述了
    发表于 10-14 09:21

    《AI for Science:人工智能驱动科学创新》第人工智能驱动的科学创新学习心得

    人工智能:科学研究的加速器 第章清晰地阐述了人工智能作为科学研究工具的强大功能。通过机器学习、深度学习等先进技术,AI能够处理和分析海量数据,发现传统方法难以捕捉的模式和规律。这不
    发表于 10-14 09:12

    risc-v在人工智能图像处理应用前景分析

    RISC-V在人工智能图像处理领域的应用前景十分广阔,这主要得益于其开源性、灵活性和低功耗等特点。以下是对RISC-V在人工智能图像处理应用前景的详细分析、RISC-V的基本特点
    发表于 09-28 11:00

    人工智能ai 数电 模电 模拟集成电路原理 电路分析

    人工智能ai 数电 模电 模拟集成电路原理 电路分析 想问下哪些比较容易学 不过好像都是要学的
    发表于 09-26 15:24

    人工智能ai4s试读申请

    目前人工智能在绘画对话等大模型领域应用广阔,ai4s也是方兴未艾。但是如何有效利用ai4s工具助力科研是个需要研究的课题,本书对ai4s基本原理和原则,方法进行描诉,有利于总结经验,拟按照要求准备相关体会材料。看能否有助于入门和提高ss
    发表于 09-09 15:36

    名单公布!【书籍评测活动NO.44】AI for Science:人工智能驱动科学创新

    ! 《AI for Science:人工智能驱动科学创新》 这本书便将为读者徐徐展开AI for Science的美丽图景,与大家起去了解: 人工智能究竟帮科学家做了什么? 人工智能
    发表于 09-09 13:54

    报名开启!深圳(国际)通用人工智能大会将启幕,国内外大咖齐聚话AI

    呈现、产业展览、技术交流、学术论坛于体的世界级人工智能合作交流平台。本次大会暨博览会由工业和信息化部政府采购中心、广东省工商联、前海合作区管理局、深圳市工信局等单位指导,深圳市人工智能产业协会主办
    发表于 08-22 15:00

    FPGA在人工智能中的应用有哪些?

    FPGA(现场可编程门阵列)在人工智能领域的应用非常广泛,主要体现在以下几个方面: 、深度学习加速 训练和推理过程加速:FPGA可以用来加速深度学习的训练和推理过程。由于其高并行性和低延迟特性
    发表于 07-29 17:05

    Python中的人工智能框架与实例

    人工智能(AI)领域,Python因其简洁的语法、丰富的库和强大的社区支持,成为了最受欢迎的编程语言之。本文将详细介绍Python中的人工智能框架,并通过具体实例展示如何使用这些框架来实现不同
    的头像 发表于 07-15 14:54 1722次阅读

    5G智能物联网课程之Aidlux下人工智能开发(SC171开发套件V2)

    5G智能物联网课程之Aidlux下人工智能开发(SC171开发套件V2) 课程类别 课程名称 视频课程时长 视频课程链接 课件链接 人工智能 参赛基础知识指引 14分50秒 https
    发表于 05-10 16:46

    5G智能物联网课程之Aidlux下人工智能开发(SC171开发套件V1)

    课程类别 课程名称 视频课程时长 视频课程链接 课件链接 人工智能 参赛基础知识指引 14分50秒 https://t.elecfans.com/v/25508.html *附件:参赛基础知识指引
    发表于 04-01 10:40

    嵌入式人工智能的就业方向有哪些?

    嵌入式人工智能的就业方向有哪些? 在新轮科技革命与产业变革的时代背景下,嵌入式人工智能成为国家新型基础建设与传统产业升级的核心驱动力。同时在此背景驱动下,众多名企也纷纷在嵌入式人工智能
    发表于 02-26 10:17

    生成式人工智能和感知式人工智能的区别

    生成新的内容和信息的人工智能系统。这些系统能够利用已有的数据和知识来生成全新的内容,如图片、音乐、文本等。生成式人工智能通常基于深度学习技术,如生成对抗网络(GANs)、变分自编码器(VAEs)等。 生成式人工智能的研究目标是能
    的头像 发表于 02-19 16:43 1734次阅读