0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

神经网络分析有助于提高人工智能系统的准确性

DPVg_AI_era 2017-12-12 16:52 次阅读

近期,来自麻省理工学院计算机科学人工智能实验室(CSAIL)和卡塔尔计算研究所的研究人员已经通过新的解释技术,来分析神经网络做机器翻译和语音识别的训练过程。

神经网络通过分析大量的训练数据来学习并执行任务,这是近期人工智能领域最令人印象深刻的进展,包括语音识别和自动翻译系统。

然而,在训练过程中,神经网络以甚至其创造者都无法解释的方式来不断调整其内部设置。计算机科学最近的许多工作都聚焦于千方百计的弄清楚神经网络的工作原理

在最近的几篇论文,来自麻省理工学院计算机科学人工智能实验室(CSAIL)和卡塔尔计算研究所的研究人员已经使用了新开发的解释技术,来分析神经网络做机器翻译和语音识别的训练过程,该新技术已被应用于其他领域。

他们对神经网络的工作原理有了基本认知。例如,这些系统似乎专注于较低级别的任务,如声音识别或部分语音识别,然后再转到更高级别的任务,如转录或语义解释。

但是研究人员也发现了翻译网络处理数据类型的一个惊人的遗漏,他们指出纠正这种遗漏会提高网络的性能。这种改进是适度的,但它指出了对神经网络的分析可能有助于提高人工智能系统的准确性。

“从历史角度看,在机器翻译里,有一个具有不同层次的金字塔,” CSAIL一位高级研究科学家说。这位科学家在是麻省理工学院电气工程和计算机科学的毕业生,曾参与Yonatan Belinkov项目。”在最低层有文字,表层形式,金字塔的顶层是一种语际表示,在做语法和语义时会达到不同的层次。这是一个非常抽象的概念,意思是你在金字塔中爬得越高,就越容易翻译成一种新的语言,然后你就再往下走。所以Yonata所做的部分工作是找出在神经网络中这种概念的会是什么样的编码。”

分层处理

神经网络之所以得名,是因为它们大致接近人脑的结构。通常,它们被分层,每个层由许多简单的处理单元节点组成,每个节点都连接到上面和下面的层中的几个节点。数据被送入最低层,其节点处理它并将其传递给下一层。层之间的连接具有不同的“权重”,它决定了任何一个节点的输出转化到到下一个节点的计算量是多少。

在训练过程中,节点之间的权重不断调整。在网络被训练后,它的创建者可以确定所有连接的权重,但有成千上万个甚至多个节点,甚至它们之间有更多的连接,推断出这些权重编码的算法几乎是不可能的。

麻省理工和卡塔尔计算研究所研究人员的技术包括训练一个神经网络和使用它的每一层的输出,通过个别的培训案例,培养其他的神经网络来执行特定的任务。这使他们能够确定每个层优化的任务是什么。

在语音识别网络的案例中,Belinkov和Glass使用的单个层输出训练系统识别“语音”,区别于口语的发音单元。例如,“T”的发音在“Tea”“Tree”和“But”,是不同的,但语音识别系统已经把他们都用字母“T”转录。事实上,Belinkov和Glass发现,低层次的网络比高层次网络语言识别能力更强。在那里,可能区别是不重要的。

同样的,Glass, Belinkov和他们卡塔尔计算研究所的同事于去年夏天在语言协会年度大会上发布的文章表明,机器翻译网络的低层善于识别词类和形态,比如时态、数字和共轭。

语义理解

但是在新的论文中,他们表明网络的更高层次在语义标注方面更好。Belinkov解释说,一部分语音标签,能认识到“herself”是一个代词,但这个代词的语义的意义,在句子“she bought the book herself”和“she herself bought the book”是不同的。语义标注会分配不同的标签,给这两句话中的“herself“,就像一个机器翻译系统可能在一个给定的目标语言为它们找到不同的翻译。

最好的机器翻译系统使用所谓的编码解码模式,和麻省理工和卡塔尔计算研究所研究人员的神经网络一样。在这样的系统中,源语言中的输入经过几个被称为编码器的网络层来产生一个向量,一组数字代表某种输入的语义内容。该向量通过多个网络层的解码器来产生目标语言中的译文。

虽然编码器和解码器在一起训练,但它们可以被认为是独立的网络。研究人员发现,奇怪的是,编码器的低层善于区分形态,但解码器的更高层不是。所以Belinkov和卡塔尔计算研究所研究人员在训练网络时,不仅仅根据翻译的准确性,也根据目标语言中的形态分析来判定性能。从本质上讲,他们迫使解码器更好地区分形态。

使用这种技术,他们培训网络将英语翻译成德语,发现其精度提高3%。这不是一个革命性的进步,但这表明,探寻神经网络的本质可能不仅仅是一项学术活动。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 神经网络
    +关注

    关注

    42

    文章

    4773

    浏览量

    100889
  • 人工智能
    +关注

    关注

    1792

    文章

    47409

    浏览量

    238920

原文标题:人类将可能操控AI?神经网络语言处理工作原理被破解

文章出处:【微信号:AI_era,微信公众号:新智元】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    嵌入式和人工智能究竟是什么关系?

    理这些数据,提高系统的响应速度和准确性。此外,嵌入式系统还可以为人工智能提供安全和隐私保护,避免数据泄露和攻击。总之,嵌入式系统
    发表于 11-14 16:39

    人工智能ai4s试读申请

    目前人工智能在绘画对话等大模型领域应用广阔,ai4s也是方兴未艾。但是如何有效利用ai4s工具助力科研是个需要研究的课题,本书对ai4s基本原理和原则,方法进行描诉,有利于总结经验,拟按照要求准备相关体会材料。看能否有助于入门和提高
    发表于 09-09 15:36

    人工神经网络的案例分析

    人工神经网络(Artificial Neural Network, ANN)作为深度学习领域的重要分支,自20世纪80年代以来一直是人工智能领域的研究热点。其灵感来源于生物神经网络,通
    的头像 发表于 07-08 18:20 810次阅读

    人工神经网络的特点和优越不包括什么

    在许多领域都取得了显著的成果,如图像识别、语音识别、自然语言处理等。然而,人工神经网络也存在一些局限性和不足之处,以下是对人工神经网络特点和优越
    的头像 发表于 07-05 09:26 950次阅读

    人工智能神经网络系统的特点

    人工智能神经网络系统是一种模拟人脑神经网络结构和功能的计算模型,具有高度的自适应、学习能力和泛化能力。本文将介绍人工智能
    的头像 发表于 07-04 09:42 508次阅读

    人工智能人工神经网络有什么区别

    人工智能(Artificial Intelligence,简称AI)和人工神经网络(Artificial Neural Network,简称ANN)是两个密切相关但又有所区别的概念。 定义和起源
    的头像 发表于 07-04 09:39 1308次阅读

    人工智能神经网络的结构是什么

    人工智能神经网络是一种模拟人脑神经网络的计算模型,其结构和功能非常复杂。 引言 人工智能神经网络是一种模拟人脑
    的头像 发表于 07-04 09:37 605次阅读

    人工智能神经网络芯片的介绍

    人工智能神经网络芯片是一类专门为深度学习和神经网络算法设计的处理器。它们具有高性能、低功耗、可扩展等特点,广泛应用于图像识别、语音识别、自然语言处理等领域。以下是关于人工智能
    的头像 发表于 07-04 09:33 823次阅读

    matlab bp神经网络分析结果怎么看

    使用内置的神经网络工具箱来实现BP神经网络的构建、训练和分析网络结构设计 在进行BP神经网络分析之前,首先需要设计合适的
    的头像 发表于 07-03 10:28 1134次阅读

    神经网络人工智能的关系是什么

    神经网络人工智能的关系是密不可分的。神经网络人工智能的一种重要实现方式,而人工智能则是神经网络
    的头像 发表于 07-03 10:25 1188次阅读

    卷积神经网络和bp神经网络的区别

    化能力。随着深度学习技术的不断发展,神经网络已经成为人工智能领域的重要技术之一。卷积神经网络和BP神经
    的头像 发表于 07-02 14:24 4338次阅读

    人工神经网络的含义和用途是

    神经网络在许多领域都有广泛的应用,包括图像识别、语音识别、自然语言处理、推荐系统、预测分析等。 一、人工神经网络的含义 定义:
    的头像 发表于 07-02 10:07 885次阅读

    神经网络人工智能的关系

    在快速发展的科技领域,人工智能(Artificial Intelligence, AI)和神经网络(Neural Networks)是两个备受瞩目的概念。它们之间的联系紧密而复杂,共同推动了智能
    的头像 发表于 07-01 14:23 904次阅读

    咳嗽检测深度神经网络算法

    疾病。因此,实现早期检测和高级诊断的自动化框架将有助于医生治疗呼吸道感染。有鉴于此,提出了使用改进的卷积神经网络(CNN)对声音文件进行有用分类的慢性咳嗽检测方法。 在该系统中,压电传感器被放置在患者
    发表于 05-15 19:05

    基于胎心仪的胎儿心脏诊断神经网络

    消息并通知医生。该系统为用户 提供了极大的便利,节省了医疗资源。因 此,人工智能算法极大地促进了胎儿电子监护的 发展。通过数据分析技术和一些算法来分析胎心 率变得越来越重要。 数据收集
    发表于 05-14 18:47