0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

终端侧人工智能引领未来带来无限可能

高通中国 2017-12-14 13:36 次阅读

伴随着大数据、算法硬件的进步,“人工智能”这一极具未来感的高新科技,正在走入我们的日常生活。从“新一代劳模”扫地机器人,到沙特第一个获得公民身份的“索菲亚”,再到可随身携带的“贴心小管家”……人工智能正在改变着我们的生活。未来,随着人工智能的普及,我们每个人都会拥有属于自己的人工智能助手。

然而,人工智能若要实现真正的普及,仅有云端侧的人工智能并不够,终端侧人工智能同样重要。那么,什么是终端侧人工智能?它的优势又有哪些?我们要如何实现它?今天,就让我们为你好好解答一下。↓↓↓

什么是终端侧人工智能?

在解释终端侧人工智能前,我们先从人工智能定义说起。从广义上讲,“人工智能”描述的是机器与周围世界交互的各种方式。通过软件和硬件的结合——一台“人工智能”设备可以基于硬件,通过算法处理数据,最终模仿人类的行为或像人一样执行任务。而终端侧人工智能就是将人工智能算法在终端上运行。

人工智能需要基于大量数据,由拥有强大运算能力的硬件承载计算,通过算法进行推演处理得出结论。因此,人工智能对硬件的运算能力提出了很高的要求。

终端侧人工智能有何优势?

如果说云是人工智能的大脑,那么智能终端就是感官。把智能终端和云大脑完美结合起来,才是人工智能未来的方向。

云端因其强大的数据汇总能力以及运算处理能力,对于人工智能非常重要。并且,它还可作为终端侧处理的补充而存在。云端可以汇集大数据并完成在终端上运行的许多人工智能推理算法的训练(现阶段)。

但在很多情况下,完全基于云端运行推理也会存在一些问题。比如,在自动驾驶等时延敏感和关键型任务的实时应用中,从终端采集数据,上传到云端,云端再通过算法推演给出解决方案,然后下达到终端,链路太长会产生一定的时延,并且还会受到网络等因素影响。

如果这些应用运行在终端侧,问题将会得到解决。终端侧人工智能是将人工智能算法在终端上运行。与在云端运行的人工智能相比,在终端侧运行人工智能算法具有即时响应、可靠性提升、隐私保护增强,以及高效利用网络带宽等诸多优势。尤其是如今的移动终端已经成为了人们生活中必不可少的角色,终端侧运行的优势更加凸显。

不过,终端侧人工智能并不意味着仅仅在运行终端侧推理。它会与云端协同合作,面向手势识别、连续认证、个性化用户界面和面向自动驾驶的精密地图构建等使用场景进行终端侧人工智能训练。基于高速连接和高性能本地处理,实现最佳的总体系统性能。

如何实现终端侧人工智能?

人工智能的运算需要基于硬件以完成大量的数据处理,因此终端侧人工智能在工作负载这方面提出了挑战。

Qualcomm 于十年前就开始了对人工智能的研究,目前也已经有了许多人工智能用例。十多年来,Qualcomm 在移动终端的专注研究,让骁龙移动平台成为了最高性能移动终端的首选系统级芯片(SoC),可以高效地处理多种计算工作负载。

通过在适宜的计算引擎上运行各种机器学习任务(如 CPUGPUDSP 等),Qualcomm 可以提供最高效的解决方案。并且这已经集成在了我们的 SoC 中。

Qualcomm Hexagon DSP 就是一个典型范例,它最初是面向其他向量数学密集型工作而设计,但已通过进一步增强用来解决人工智能的工作负载。实际上,在骁龙835 上支持 Qualcomm Hexagon 向量扩展的 Hexagon DSP,与 Qualcomm Kryo CPU 相比,在运行相同工作负载时(GoogleNet Inception网络)能够实现 25 倍能效提升和 8 倍性能提升。

架构的多样性是至关重要的,人工智能的运算不能仅依赖某一类引擎处理所有工作。Qualcomm 还将持续演进面向机器学习工作负载的现有引擎,保持 Qualcomm 在性能表现最大化上的领先优势。并利用对新兴神经网络的研究,专注提升性能表现,以扩展异构计算能力,充分应对未来人工智能工作负载。

我们正大规模普及人工智能

仅有优良硬件还不够,让开发者可以简单便利的使用异构计算很重要。为了弥补这一差距,我们发布了骁龙神经处理引擎(NPE)软件开发包(SDK)。它能缩短终端侧卷积神经网络(CNN)和递归神经网络(RNN)在合适的骁龙引擎(例如 Kryo CPU、Qualcomm Adreno GPU 和 Hexagon DSP)上的运行时间,对图形识别和自然语言处理分别都有着重要作用。相同的开发者 API 给每个引擎都提供接入口,从而使开发者能够方便地无缝切换人工智能任务。

该神经处理引擎还支持通用深度学习模型框架,例如 Caffe/Caffe2 和 TensorFlow。该 SDK 是利用骁龙技术提供最佳性能和功耗的轻量灵活平台,旨在帮助从医疗健康到安全的广泛行业内的开发者和终端设备厂商,在便携式终端上运行它们自己的专有神经网络模型。例如,今年的 F8 大会上,Facebook 和 Qualcomm 宣布合作,支持优化 Facebook 开源深度学习框架 Caffe2,以及 NPE 框架。

在终端侧完成全部或大部分思考的、“始终开启”的智能终端中蕴藏着巨大的机遇,Qualcomm 期待通过研究和产品化推动先进机器学习的发展。

目前,Qualcomm 人工智能平台可通过高效的终端侧机器学习,提供高度响应、高度安全且直观的用户体验。未来还有更多可能。


声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 人工智能
    +关注

    关注

    1791

    文章

    47208

    浏览量

    238305
  • ai技术
    +关注

    关注

    1

    文章

    1269

    浏览量

    24293

原文标题:终端侧人工智能,给未来更多可能

文章出处:【微信号:Qualcomm_China,微信公众号:高通中国】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    嵌入式和人工智能究竟是什么关系?

    了重要作用。在未来,随着嵌入式系统和人工智能技术的不断进步,我们可以预见更多创新应用的出现,为社会发展和生活品质的提升带来更多可能性。
    发表于 11-14 16:39

    未来智慧建筑:人工智能技术的无限可能

    科技将探讨人工智能技术在智能建筑中的应用展望,从智能化管理、环境优化、安全监控等方面进行分析。 1. 智能化管理: 人工智能技术为
    的头像 发表于 10-17 14:07 246次阅读

    《AI for Science:人工智能驱动科学创新》第6章人AI与能源科学读后感

    探讨了人工智能如何通过技术创新推动能源科学的进步,为未来的可持续发展提供了强大的支持。 首先,书中通过深入浅出的语言,介绍了人工智能在能源领域的基本概念和技术原理。这使得我对人工智能
    发表于 10-14 09:27

    AI for Science:人工智能驱动科学创新》第4章-AI与生命科学读后感

    阅读这一章后,我深感人工智能与生命科学的结合正引领着一场前所未有的科学革命,以下是我个人的读后感: 1. 技术革新与生命科学进步 这一章详细阐述了人工智能如何通过其强大的数据处理和分析能力,加速生命科学
    发表于 10-14 09:21

    《AI for Science:人工智能驱动科学创新》第一章人工智能驱动的科学创新学习心得

    ,无疑为读者铺设了一条探索人工智能(AI)如何深刻影响并推动科学创新的道路。在阅读这一章后,我深刻感受到了人工智能技术在科学领域的广泛应用潜力以及其带来的革命性变化,以下是我个人的学习心得: 1.
    发表于 10-14 09:12

    risc-v在人工智能图像处理应用前景分析

    RISC-V和Arm内核及其定制的机器学习和浮点运算单元,用于处理复杂的人工智能图像处理任务。 四、未来发展趋势 随着人工智能技术的不断发展和普及,RISC-V在人工智能图像处理领域的
    发表于 09-28 11:00

    名单公布!【书籍评测活动NO.44】AI for Science:人工智能驱动科学创新

    AI for Science的基础知识,梳理了产业地图,并给出了相关政策启示。 内容提要 人工智能驱动科学创新(AI for Science)带来的产业变革与每个人息息相关。本书聚焦于人工智能
    发表于 09-09 13:54

    报名开启!深圳(国际)通用人工智能大会将启幕,国内外大咖齐聚话AI

    8月28日至30日,2024深圳(国际)通用人工智能大会暨深圳(国际)通用人工智能产业博览会将在深圳国际会展中心(宝安)举办。大会以“魅力AI·无限未来”为主题,致力于打造全球通用
    发表于 08-22 15:00

    FPGA在人工智能中的应用有哪些?

    FPGA(现场可编程门阵列)在人工智能领域的应用非常广泛,主要体现在以下几个方面: 一、深度学习加速 训练和推理过程加速:FPGA可以用来加速深度学习的训练和推理过程。由于其高并行性和低延迟特性
    发表于 07-29 17:05

    神州数码亮相2024世界人工智能大会,以生成式AI和智能算力共绘智能未来

      在科技的最前沿,人工智能成为万千目光汇聚的焦点,它与行业的深度融合,带来颠覆性的变革与创新。7月4日,2024世界人工智能大会暨人工智能全球治理高级别会议(以下简称“WAIC 20
    的头像 发表于 07-05 14:21 385次阅读
    神州数码亮相2024世界<b class='flag-5'>人工智能</b>大会,以生成式AI和<b class='flag-5'>智能</b>算力共绘<b class='flag-5'>智能</b><b class='flag-5'>未来</b>

    高通亮相2024世界人工智能大会

    参加大会,通过多场会议论坛分享自身在人工智能领域取得的创新成果,以及对于人工智能产业发展的新思考。同时,高通也在大会现场带来前沿技术演示,从AI基础技术研究、领先产品应用和未来行业赋能
    的头像 发表于 07-05 10:57 751次阅读

    Arm终端CSS革新,加速端人工智能时代

    在当今信息化与智能化的交汇点,人工智能的发展势头正盛。尤其是在端人工智能领域,其对于计算平台的性能、能效以及集成度的要求日益提升。近日,全球领先的半导体知识产权(IP)提供商Arm,
    的头像 发表于 06-24 18:23 1489次阅读

    华为携手伙伴再出发,引领空间智能新潮流,创造无限可能

    华为携手伙伴再出发,引领空间智能新潮流,创造无限可能 2024年3月13日,HarmonyOS Connect伙伴峰会(以下简称峰会)于上海隆重召开。本次峰会以《一起创造
    的头像 发表于 03-18 10:56 954次阅读
    华为携手伙伴再出发,<b class='flag-5'>引领</b>空间<b class='flag-5'>智能</b>新潮流,创造<b class='flag-5'>无限</b><b class='flag-5'>可能</b>

    嵌入式人工智能的就业方向有哪些?

    嵌入式人工智能的就业方向有哪些? 在新一轮科技革命与产业变革的时代背景下,嵌入式人工智能成为国家新型基础建设与传统产业升级的核心驱动力。同时在此背景驱动下,众多名企也纷纷在嵌入式人工智能领域布局
    发表于 02-26 10:17

    CES 2024:三星展示一系列引领未来人工智能应用

    在CES 2024上,三星展示了一系列引领未来人工智能应用,将智能生活推向新的高度。
    的头像 发表于 01-12 15:05 1486次阅读