作者:京东科技 贾世闻
RAG(Retrieval-Augmented Generation)技术在AI生态系统中扮演着至关重要的角色,特别是在提升大型语言模型(LLMs)的准确性和应用范围方面。RAG通过结合检索技术与LLM提示,从各种数据源检索相关信息,并将其与用户的问题结合,生成准确且丰富的回答。这一机制特别适用于需要应对信息不断更新的场景,因为大语言模型所依赖的参数知识本质上是静态的。
RAG技术的优势在于它能够利用外部知识库,引用大量的信息,以提供更深入、准确且有价值的答案,提高了生成文本的可靠性。此外,RAG模型具备检索库的更新机制,可以实现知识的即时更新,无需重新训练模型,这在及时性要求高的应用中占优势。
目前构建一个RAG并不是一个非常的事情。使用Langchain等成熟技术架构百十行代码就能构建一个Demo。那能不能利用目前的Rust生态构建一个简易的RAG。说干就干,本期和大家聊聊如果使用rust语言构建rag。
构建知识库
知识库构建主要是模型+向量库,为了保证所有系统中所有组件都使用rust构建,在限量数据库的选型上我们使用qdrant,纯rust构建的向量数据库。
知识库的构建最重要的步骤是embedding的过程。
过程如下:
模型加载
获取文本token
通过模型获取文本的Embedding
下面详细介绍每个过程细节及代码实现。
模型加载
以下代码用于加载模型和tokenizer
async fn build_model_and_tokenizer(model_config: &ConfigModel) -> Result< (BertModel, Tokenizer) > { let device = Device::new_cuda(0)?; let repo = Repo::with_revision( model_config.model_id.clone(), RepoType::Model, model_config.revision.clone(), ); let (config_filename, tokenizer_filename, weights_filename) = { let api = ApiBuilder::new() .build()?; let api = api.repo(repo); let config = api.get("config.json").await?; let tokenizer = api.get("tokenizer.json").await?; let weights = if model_config.use_pth { api.get("pytorch_model.bin").await? } else { api.get("model.safetensors").await? }; (config, tokenizer, weights)A }; let config = std::fs::read_to_string(config_filename)?; let mut config: Config = serde_json::from_str(&config)?; let tokenizer = Tokenizer::from_file(tokenizer_filename).map_err(E::msg)?; let vb = if model_config.use_pth { VarBuilder::from_pth(&weights_filename, DTYPE, &device)? } else { unsafe { VarBuilder::from_mmaped_safetensors(&[weights_filename], DTYPE, &device)? } }; if model_config.approximate_gelu { config.hidden_act = HiddenAct::GeluApproximate; } let model = BertModel::load(vb, &config)?; Ok((model, tokenizer)) }
模型和tokenizer是系统中频繁调用的部分,所以为了避免重复加载,通过OnceCell构建静态全局变量
pub static GLOBAL_EMBEDDING_MODEL: OnceCell> = OnceCell::const_new(); pub async fn init_model_and_tokenizer() -> Arc< (BertModel, Tokenizer) > { let config = get_config().unwrap(); let (m, t) = build_model_and_tokenizer(&config.model).await.unwrap(); Arc::new((m, t)) }
在系统启动时加载模型
GLOBAL_RUNTIME.block_on(async { log::info!("global runtime start!"); // 加载model GLOBAL_EMBEDDING_MODEL .get_or_init(init_model_and_tokenizer) .await; });
Embedding 过程主要由一下函数实现。
pub async fn embedding_setence(content: &str) -> Result>> { let m_t = GLOBAL_EMBEDDING_MODEL.get().unwrap(); let tokens = m_t .1 .encode(content, true) .map_err(E::msg)? .get_ids() .to_vec(); let token_ids = Tensor::new(&tokens[..], &m_t.0.device)?.unsqueeze(0)?; let token_type_ids = token_ids.zeros_like()?; let sequence_output = m_t.0.forward(&token_ids, &token_type_ids)?; let (_n_sentence, n_tokens, _hidden_size) = sequence_output.dims3()?; let embeddings = (sequence_output.sum(1)? / (n_tokens as f64))?; let embeddings = normalize_l2(&embeddings)?; let encodings = embeddings.to_vec2::()?; Ok(encodings) }
函数通过tokenizer encode输入的文本,再使用模型embed token 获取一个三维的Tensor,最后归一化张量。
数据入库
知识库构建是将待检索文本向量化后存储到向量数据库的过程。
本次使用京东云文档作为原始文本,加工为以下格式。数据加工过程这里就不累述了。
{ "content": "# 服务计费nn主机迁移服务自身为免费服务,但是迁移目标为云主机镜像时,迁移过程依赖系统自动创建的 中转资源的配合,这些资源中涉及部分付费资源,会产生相应费用。nn迁移过程涉及的中转资付费资源配置及计费说明如下(单个迁移任务):nn| | 云主机 | 云硬盘 | 弹性公网IP |n| --- | --- | --- | ------ |n| 计费类型 | 按配置 | 按配置 | 按用量 |n| 规格配置 | 2C4G (c.n2.large或c.n3.large或c.n1.large) | 系统盘:40G 通用型SSD 数据盘:通用型SSD,数量及容量取决于源服务器系统盘及数据盘情况 | 30Mbps |n| 费用预估 | 云主机规格每小时价格\\*迁移时长 | 云硬盘规格每小时价格\\*迁移时长 | 弹性公网IP每小时保有费\\*迁移时长 仅使用弹性公网IP入方向流量,只涉及IP保有用,不涉及流量费用 |nn> 提示:n>n> * 迁移时长取决于源服务器迁数据量以及源服务器公网出方向带宽,公网连接顺畅且源服务器公网出方向带宽不低于22.5Mbps的情况下(主机迁移为单线程传输,京东云云主机在单流传输下实际带宽为带宽上限的75%左右),实际数据容量为5GB的磁盘迁移时长在30分钟左右。n> * 中转实例实例绑定的安全组出方向默认拒绝所有流量,因此默认情况下降不会产生任何公网出方向收费流量,但此配置也影响了云主机部分监控指标的上报,如需要监控中转实例的全部监控数据,可自行调整安全组规则方向出方向443端口。", "title": "服务计费说明", "product": "云主机 CVM", "url": "https://docs.jdcloud.com/cn/virtual-machines/server-migration-service/billing" }
入库完整代码如下:
use anyhow::Error as E; use anyhow::Result; use candle_core::Device; use candle_core::Tensor; use candle_nn::VarBuilder; use candle_transformers::models::bert::{BertModel, Config, HiddenAct, DTYPE}; use hf_hub::{api::tokio::Api, Repo, RepoType}; use qdrant_client::qdrant::CollectionExistsRequest; use qdrant_client::qdrant::CreateCollectionBuilder; use qdrant_client::qdrant::DeleteCollection; use qdrant_client::qdrant::Distance; use qdrant_client::qdrant::UpsertPointsBuilder; use qdrant_client::qdrant::VectorParamsBuilder; use qdrant_client::Payload; use qdrant_client::{ qdrant::{ CollectionOperationResponse, CreateCollection, PointStruct, PointsOperationResponse, UpsertPoints, }, Qdrant, }; use serde::{Deserialize, Serialize}; use serde_json::from_str; use std::fs; use std::sync::Arc; use tokenizers::Tokenizer; use tokio::sync::OnceCell; use uuid::Uuid; use walkdir::WalkDir; #[derive(Debug, Serialize, Deserialize, Clone)] pub struct Doc { pub content: String, pub title: String, pub product: String, pub url: String, } #[derive(Debug, PartialEq, Serialize, Deserialize, Clone)] pub struct ModelConfig { #[serde(default = "ModelConfig::model_id_default")] pub model_id: String, #[serde(default = "ModelConfig::revision_default")] pub revision: String, #[serde(default = "ModelConfig::use_pth_default")] pub use_pth: bool, #[serde(default = "ModelConfig::approximate_gelu_default")] pub approximate_gelu: bool, } impl Default for ModelConfig { fn default() -> Self { Self { model_id: Self::model_id_default(), revision: Self::revision_default(), use_pth: Self::use_pth_default(), approximate_gelu: Self::approximate_gelu_default(), } } } impl ModelConfig { fn model_id_default() -> String { "moka-ai/m3e-large".to_string() } fn revision_default() -> String { "main".to_string() } fn use_pth_default() -> bool { true } fn approximate_gelu_default() -> bool { false } } pub static GLOBAL_MODEL: OnceCell> = OnceCell::const_new(); pub static GLOBAL_TOKEN: OnceCell> = OnceCell::const_new(); pub async fn init_model() -> Arc { let config = ModelConfig::default(); let (m, _) = build_model_and_tokenizer(&config).await.unwrap(); Arc::new(m) } pub async fn init_tokenizer() -> Arc { let config = ModelConfig::default(); let (_, t) = build_model_and_tokenizer(&config).await.unwrap(); Arc::new(t) } async fn build_model_and_tokenizer(model_config: &ModelConfig) -> Result< (BertModel, Tokenizer) > { let device = Device::new_cuda(0)?; let repo = Repo::with_revision( model_config.model_id.clone(), RepoType::Model, model_config.revision.clone(), ); let (config_filename, tokenizer_filename, weights_filename) = { let api = Api::new()?; let api = api.repo(repo); let config = api.get("config.json").await?; let tokenizer = api.get("tokenizer.json").await?; let weights = if model_config.use_pth { api.get("pytorch_model.bin").await? } else { api.get("model.safetensors").await? }; (config, tokenizer, weights) }; let config = std::fs::read_to_string(config_filename)?; let mut config: Config = serde_json::from_str(&config)?; let tokenizer = Tokenizer::from_file(tokenizer_filename).map_err(E::msg)?; let vb = if model_config.use_pth { VarBuilder::from_pth(&weights_filename, DTYPE, &device)? } else { unsafe { VarBuilder::from_mmaped_safetensors(&[weights_filename], DTYPE, &device)? } }; if model_config.approximate_gelu { config.hidden_act = HiddenAct::GeluApproximate; } let model = BertModel::load(vb, &config)?; Ok((model, tokenizer)) } pub async fn embedding_setence(content: &str) -> Result>> { let m = GLOBAL_MODEL.get().unwrap(); let t = GLOBAL_TOKEN.get().unwrap(); let tokens = t.encode(content, true).map_err(E::msg)?.get_ids().to_vec(); let token_ids = Tensor::new(&tokens[..], &m.device)?.unsqueeze(0)?; let token_type_ids = token_ids.zeros_like()?; let sequence_output = m.forward(&token_ids, &token_type_ids)?; let (_n_sentence, n_tokens, _hidden_size) = sequence_output.dims3()?; let embeddings = (sequence_output.sum(1).unwrap() / (n_tokens as f64))?; let embeddings = normalize_l2(&embeddings).unwrap(); let encodings = embeddings.to_vec2::()?; Ok(encodings) } pub fn normalize_l2(v: &Tensor) -> Result { Ok(v.broadcast_div(&v.sqr()?.sum_keepdim(1)?.sqrt()?)?) } pub struct QdrantClient { client: Qdrant, } impl QdrantClient { pub async fn create_collection( &self, request: impl Into, ) -> Result { let resp = self.client.create_collection(request).await?; Ok(resp) } pub async fn delete_collection( &self, request: impl Into, ) -> Result { let resp = self.client.delete_collection(request).await?; Ok(resp) } pub async fn collection_exists( &self, request: impl Into, ) -> Result { let resp = self.client.collection_exists(request).await?; Ok(resp) } pub async fn load_dir(&self, path: &str, collection_name: &str) { let mut points = vec![]; for entry in WalkDir::new(path) .into_iter() .filter_map(Result::ok) .filter(|e| !e.file_type().is_dir() && e.file_name().to_str().is_some()) { if let Some(p) = entry.path().to_str() { let id = Uuid::new_v4(); let content = match fs::read_to_string(p) { Ok(c) => c, Err(_) => continue, }; let doc = match from_str::(content.as_str()) { Ok(d) => d, Err(_) => continue, }; let mut payload = Payload::new(); payload.insert("content", doc.content); payload.insert("title", doc.title); payload.insert("product", doc.product); payload.insert("url", doc.url); let vector_contens = embedding_setence(content.as_str()).await.unwrap(); let ps = PointStruct::new(id.to_string(), vector_contens[0].clone(), payload); points.push(ps); if points.len().eq(&100) { let p = points.clone(); self.client .upsert_points(UpsertPointsBuilder::new(collection_name, p).wait(true)) .await .unwrap(); points.clear(); println!("batch finish"); } } } if points.len().gt(&0) { self.client .upsert_points(UpsertPointsBuilder::new(collection_name, points).wait(true)) .await .unwrap(); } } } #[tokio::main] async fn main() { // 加载模型 GLOBAL_MODEL.get_or_init(init_model).await; GLOBAL_TOKEN.get_or_init(init_tokenizer).await; let collection_name = "default_collection"; // The Rust client uses Qdrant's GRPC interface let qdrant = Qdrant::from_url("http://localhost:6334").build().unwrap(); let qdrant_client = QdrantClient { client: qdrant }; if !qdrant_client .collection_exists(collection_name) .await .unwrap() { qdrant_client .create_collection( CreateCollectionBuilder::new(collection_name) .vectors_config(VectorParamsBuilder::new(1024, Distance::Dot)), ) .await .unwrap(); } qdrant_client .load_dir("/root/jd_docs", collection_name) .await; println!("{:?}", qdrant_client.client.health_check().await); }
以上代码要完成的任务如下:
推理服务
推理服务使用 rust 构建的 mistral.rs。
由于国内访问hf 并不方便所以先通过 https://hf-mirror.com/ 现将模型下载到本地。本次使用qwen模型
HF_ENDPOINT="https://hf-mirror.com" huggingface-cli download --repo-type model --resume-download Qwen/Qwen2-7B --local-dir /root/Qwen2-7B
启动 mistralrs-server
git clone https://github.com/EricLBuehler/mistral.rs cd mistral.rs cargo run --bin mistralrs-server --features cuda -- --port 3333 plain -m /root/Qwen2-7B -a qwen2
推理服务调用
mistral.rs 支持 Openai 的 api接口,使用 openai-api-rs调用即可。推理时间比较长 timeout 要设置长一些,若timeout 时间太短有可能不等返回结果就已经强制超时。
pub static GLOBAL_OPENAI_CLIENT: Lazy> = Lazy::new(|| { let mut client = OpenAIClient::new_with_endpoint("http://10.0.0.7:3333/v1".to_string(), "EMPTY".to_string()); client.timeout = Some(30); Arc::new(client) }); pub async fn inference(content: &str, max_len: i64) -> Result> { let req = ChatCompletionRequest::new( "".to_string(), vec![chat_completion::ChatCompletionMessage { role: chat_completion::MessageRole::user, content: chat_completion::Content::Text(content.to_string()), name: None, tool_calls: None, tool_call_id: None, }], ) .max_tokens(max_len); let cr = GLOBAL_OPENAI_CLIENT.chat_completion(req).await?; Ok(cr.choices[0].message.content.clone()) }
将Retriever和推理服务集成
pub async fn answer(question: &str, max_len: i64) -> Result> { let retriver = retriever(question, 1).await?; let mut context = "".to_string(); for sp in retriver.result { let payload = sp.payload; let product = payload.get("product").unwrap().to_string(); let title = payload.get("title").unwrap().to_string(); let content = payload.get("content").unwrap().to_string(); context.push_str(&product); context.push_str(&title); context.push_str(&content); } let prompt = format!( "你是一个云技术专家, 使用以下检索到的Context回答问题。用中文回答问题。 Question: {} Context: {} ", question, context ); log::info!("{}", prompt); let req = ChatCompletionRequest::new( "".to_string(), vec![chat_completion::ChatCompletionMessage { role: chat_completion::MessageRole::user, content: chat_completion::Content::Text(prompt), name: None, tool_calls: None, tool_call_id: None, }], ) .max_tokens(max_len); let cr = GLOBAL_OPENAI_CLIENT.chat_completion(req).await?; Ok(cr.choices[0].message.content.clone()) }
后记
完整工程地址[embedding_server]https://github.com/jiashiwen/embedding_server
后续工程问题,多卡推理,多机推理,推理加速
资源对比
GPU 型号
|=========================================+========================+======================| | 0 NVIDIA A30 Off | 00000000:00:07.0 Off | 0 | | N/A 30C P0 29W / 165W | 0MiB / 24576MiB | 0% Default | | | | Disabled | +-----------------------------------------+------------------------+----------------------+
Embedding 资源
m3e-large
vllm
+-----------------------------------------------------------------------------------------+ | Processes: | | GPU GI CI PID Type Process name GPU Memory | | ID ID Usage | |=========================================================================================| | 0 N/A N/A 822789 C ...iprojects/rag_demo/.venv/bin/python 1550MiB | +-----------------------------------------------------------------------------------------+
candle
+-----------------------------------------------------------------------------------------+ | Processes: | | GPU GI CI PID Type Process name GPU Memory | | ID ID Usage | |=========================================================================================| | 0 N/A N/A 823261 C target/debug/embedding_server 1484MiB | +-----------------------------------------------------------------------------------------+
推理资源
Qwen1.5-1.8B-Chat
vllm
|=========================================================================================| | 0 N/A N/A 822437 C /usr/bin/python3 20440MiB | +-----------------------------------------------------------------------------------------+
mistral.rs
|=========================================================================================| | 0 N/A N/A 822174 C target/debug/mistralrs-server 22134MiB | +-----------------------------------------------------------------------------------------+
Qwen2-7B
vllm 现存溢出
[rank0]: OutOfMemoryError: CUDA out of memory. Tried to allocate 9.25 GiB. GPU
mistral.rs
|=========================================================================================| | 0 N/A N/A 656923 C target/debug/mistralrs-server 22006MiB | +-----------------------------------------------------------------------------------------+
从实际情况来看,Embedding 模型再资源占用情况 rust candle框架使用显存略小些;推理模型Qwen1.5-1.8B-Chat,vllm 资源占用略小。Qwen2-7B vllm直接显存溢出。
坑
大部分框架中使用 hf-hub 采用同步调用,不支持境内的mirror。动手改造
src/api/tokio.rs
impl ApiBuilder { /// Set endpoint example 'https://hf-mirror.com' pub fn with_endpoint(mut self, endpoint: &str) -> Self { self.endpoint = endpoint.to_string(); self } } 审核编辑 黄宇
-
AI
+关注
关注
87文章
29922浏览量
268204 -
Rust
+关注
关注
1文章
228浏览量
6550 -
LLM
+关注
关注
0文章
265浏览量
300
发布评论请先 登录
相关推荐
评论