0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

人工智能的快速发展的确值得欣喜但还有不足的地方

mK5P_AItists 2017-12-28 16:22 次阅读

人工智能的快速发展的确值得欣喜,但快速发展的背后还有各种不完善的地方。比如,前不久麻省理工学院的一些学生,利用3D打印出来的乌龟,成功地让谷歌的InceptionV3图像分类器认为其是一个步枪。乌龟=步枪?这个差距还是非常巨大的。如果正在行驶的无人汽车,把一个停车标志看成了限速标志呢?这将会带来多大的危险?

一辆自动列车在轨道上飞速行驶,它的摄像头不断地扫描着各种信号,以预测它的行驶速度应该有多快。它注意到了一个似乎需要提高速度的信号,然后照做了。几秒钟之后,火车险些出轨。后来,当一名人类调查员检查出问题的标志时,他们得到的是一种截然相反的信号——是放慢速度,而不是加快速度。

这是一种极端的比喻,但它表明了当今机器学习面临的最大挑战之一。神经网络能做的只能和它们所接受的信息一样好。这导致了一些引人注目的例子,说明基于错误数据训练的人工智能是有偏见的。但这些技术也容易受到另一种被称为“对抗性的例子”的弱点的影响。当一个神经网络将图像识别为一件事物时,就会出现一个对抗性的例子——人类看到的是另外一种东西。

这一现象是在2013年发现的,当时一群来自谷歌和OpenAI的研究人员意识到,他们可以稍微改变图像中的像素,使其看起来和人看到的一样,但机器学习算法会将其归类为完全不同的东西。例如,一个图像可能看起来像一只猫,但是当一个计算机视觉程序看到它时,它是一只狗。

为什么这种巧合如此重要——而且有潜在的风险?想象一下,如果一辆自动驾驶汽车正沿着街道行驶,它可能把停车标志看成限速标志。如果有人能设计出一种财务文件,当一个人看到它时,它是一种样子,但当它被扫描进电脑时,却显示出完全不同的数字,这意味着什么呢?或者,如果某个充满恶意的人发明了一种武器,当美国运输安全管理局的摄像头扫描、使用深度学习来处理图像的时候,这种武器似乎是无害的——比如说,一只乌龟?

当它们刚被发现的时候,对抗性的例子并不是令人担忧的。许多研究人员认为这是一个极端案例,一个随机的理论巧合。毕竟,在需要完全访问算法内部的时候创建一个敌对的例子,它会欺骗用户。研究人员只能用数字图像来构建这些例子——如果你试图打印出数字形式的图像,那么你对图像的超精确控制会立即被扭曲,因为打印机的分辨率无法在如此详细的水平上捕捉像素的变化。例如,尽管你可以成功地骗过一种算法,让你以为是狗的图片在它看来是只猫,但如果你把图像打印出来,并要求算法识别它时,它就不会被骗了。在现实世界中改变一个物体似乎更加困难。这似乎是一个不可能的挑战,要创造出一个物体,在形状方面有如此细微的变化,以至于人工智能会把它误认为是别的东西。另外,即使你做到了,一旦改变了角度也不会奏效。

或者说,学界的想法就是这样的。但本月早些时候,麻省理工学院的一组学生成功用3D打印做了一个看起来像一只可爱的小乌龟的物体——但被机器学习算法当作步枪来分类。麻省理工学院的博士生AnishAthalye说:“我们已经证明了它们不是利用奇怪的角落或奇怪部件。实际上,你可以在现实生活中伪造这些物体,从而骗过机器学习算法。”

学生们创建了自己的算法,无论模糊,旋转,缩放,还是角度的任何变化(无论是打印出的2D图像还是3D模型),都可以产生物理对抗性的例子。换句话说,他们的乌龟式步枪不只是一次性的。例如,他们用3D打印出的棒球,被电脑认为是浓缩咖啡。它可以可靠地骗过谷歌的InceptionV3图像分类器——可以识别1000个不同的物体的图像。这些算法已经存在于我们的手机和电脑上,使得照片库可以被搜索到,并使得在网上可以很容易对图片中对朋友进行标记。

在被问到如何应对敌对的例子时,谷歌指出,谷歌的研究人员已经在着手解决这个问题,该公司正在进行一项竞赛,目的是创建一种图像分类算法,不会被对抗性例子所愚弄。

这个3D打印的棒球,在电脑看起来就像是一杯浓缩咖啡。

麻省理工学院的学生们的工作给将原本只存在于理论上的担忧变成了现实。“风险很高,”Athalye说,他有计算机安全方面的背景。“我们还没有打破真正的系统,但我们已经比人们想象的更接近这一步了。”

并不是只有Athalye和他的同事们在这方面进行努力。来自华盛顿大学、密歇根大学、石溪大学和加州大学伯克利分校的一组学者能够打印出贴纸,并将其附着在停止标记上,从而使图像分类神经网络将它们识别为别的东西。对停车标志的微小改动可能看起来像是给司机(或乘客)的涂鸦,但自动驾驶汽车会看到一个让车标志或限速标志。除了扰乱交通,这可能是危险的:如果一辆车没有看到停车标志,并穿过十字路口,它就会撞上另一辆车,让人们的生命处于危险之中。

Athalye说:“在实际系统中,对抗性的例子应该是一个真正值得的问题。如果我们能做到这一点,坏人也能做到。”

部分问题在于,研究人员并不完全理解为什么会出现对抗性的例子——尽管很多人能自己创造出这方面的例子。如果没有对这一现象的深刻理解,就很难建立起防御机制,使图像分类器神经网络不容易受到机器学习中最令人费解的特性的影响。

但这并不意味着研究人员没有尝试。据加州大学伯克利分校的博士后研究员BoLi说,目前已经有60多篇论文致力于在各种不同的语境中寻找对抗性的例子。他曾致力于制作贴纸,以改变算法对街头标识的看法。

一些人乐观地认为,最终研究人员将能够找到一个解决方案,并找到一种方法来预防这种对抗性。对于安全研究人员来说,将能够通过特定的软件解决方案来抵御特定的威胁,这一点仍然是积极的。这可能不是一个能保护所有攻击的万能工具,而是防范特定类型威胁的防御措施。

NicolasPapernot是宾夕法尼亚州立大学计算机科学研究生,他指出,研究人员正开始寻找解决方案,无论成果多么有限。他在电子邮件中告诉我:“我非常乐观地认为,我们可以取得进步,最终实现强大的机器学习。”安全和机器学习社区也进行了卓有成效的交流。例如,今年3个不同的研究小组报告了对视觉模型进行基准测试的三个关键任务:手写数字识别、街景房屋号码识别,以及对象和动物的彩色图像分类。

其他人则不那么肯定。NicholasCarlini是加州大学伯克利分校计算机安全专业的一名博士生,他想要攻破其他学者对对抗性例子的防御机制。“我有点像坏人,”他说。“我说对不起,不,这没用。”作为攻击者,我可以根据你的防御来调整波长以进行攻击。”

Carlini已经发表了几篇关于他的攻击的文章,在2017年5月的一篇文章中,他废除了10个不同的防御计划,并正在进行更多的工作。他认为,他的研究是一种扼杀研究思路的方法,他认为这些研究不会带来任何领域的进步,学者需要将研究的火力集中在更有前途的方法上。在有限的情况下,这样的一种方法会迫使攻击者歪曲对手的样例照片,以致于人眼能明显察觉到。尽管如此,为了抵御特定的、有限的攻击,少数有效的防御手段还是无法在数据集之间进行转换。

至少根据Carlini的说法,这是一个光明的一面。他说:“在一般安全社区,我们遇到了这样一个问题,在人们开始真正试图攻击他们之前,系统已经被使用了20年,我们意识到攻破它们已经太晚了,我们已经被问题困住了。令人兴奋的是,在这些东西真正被投入使用之前,人们正在努力解决这个问题,因为这意味着我们有希望解决问题,至少有一点,或者至少在我们付诸实践之前就能理解这个问题。”

即使是3D打印的海龟也只能工作,因为Athalye和他的同事们能够接触到他们能够愚弄的神经网络的内部机制——一个“白盒子”的情况。研究人员是否能够在不知情的情况下创造出物理对抗的例子还有待观察,即所谓的“黑匣子”情况。这就是真实世界的攻击者的处境,因为美国运输安全管理局肯定不会把代码发布到任何可以用来扫描行李的神经网络上。Athalye说,在不考虑图像分类器的代码的情况下,找出如何做出对抗性的例子是他的下一个目标。

尽管这看起来很可怕,但Athalye并不认为我们需要担心——至少现在还没有出现。“没有理由恐慌。”他说:“我认为我们的工作是及时的,而且有可能损害系统。但我们还没有发现能够撞到别人的特斯拉。”

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 神经网络
    +关注

    关注

    42

    文章

    4773

    浏览量

    100889
  • 人工智能
    +关注

    关注

    1792

    文章

    47409

    浏览量

    238919
  • 机器学习
    +关注

    关注

    66

    文章

    8424

    浏览量

    132764

原文标题:为什么神经网络会把乌龟识别成步枪?现在的 AI 值得信任吗?

文章出处:【微信号:AItists,微信公众号:人工智能学家】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    嵌入式和人工智能究竟是什么关系?

    领域,如工业控制、智能家居、医疗设备等。 人工智能是计算机科学的一个分支,它研究如何使计算机具备像人类一样思考、学习、推理和决策的能力。人工智能发展历程可以追溯到上世纪50年代,经
    发表于 11-14 16:39

    发展人工智能对社会的利与弊?

    人工智能(AI)的发展对社会的影响是深远且复杂的,它如同一把双刃剑,既带来了前所未有的机遇和利益,也伴随着一系列挑战和风险。 一、人工智能发展的利益 提高生产力和效率
    的头像 发表于 10-22 16:47 3056次阅读

    《AI for Science:人工智能驱动科学创新》第6章人AI与能源科学读后感

    探讨了人工智能如何通过技术创新推动能源科学的进步,为未来的可持续发展提供了强大的支持。 首先,书中通过深入浅出的语言,介绍了人工智能在能源领域的基本概念和技术原理。这使得我对人工智能
    发表于 10-14 09:27

    AI for Science:人工智能驱动科学创新》第4章-AI与生命科学读后感

    。 4. 对未来生命科学发展的展望 在阅读这一章后,我对未来生命科学的发展充满了期待。我相信,在人工智能技术的推动下,生命科学将取得更加显著的进展。例如,在药物研发领域,AI技术将帮助科学家们更加
    发表于 10-14 09:21

    《AI for Science:人工智能驱动科学创新》第一章人工智能驱动的科学创新学习心得

    的效率,还为科学研究提供了前所未有的洞察力和精确度。例如,在生物学领域,AI能够帮助科学家快速识别基因序列中的关键变异,加速新药研发进程。 2. 跨学科融合的新范式 书中强调,人工智能的应用促进了多个
    发表于 10-14 09:12

    risc-v在人工智能图像处理应用前景分析

    长时间运行或电池供电的设备尤为重要。 高性能 : 尽管RISC-V架构以低功耗著称,其高性能也不容忽视。通过优化指令集和处理器设计,RISC-V可以在处理复杂的人工智能图像处理任务时表现出色。 三
    发表于 09-28 11:00

    人工智能ai 数电 模电 模拟集成电路原理 电路分析

    人工智能ai 数电 模电 模拟集成电路原理 电路分析 想问下哪些比较容易学 不过好像都是要学的
    发表于 09-26 15:24

    人工智能ai4s试读申请

    目前人工智能在绘画对话等大模型领域应用广阔,ai4s也是方兴未艾。但是如何有效利用ai4s工具助力科研是个需要研究的课题,本书对ai4s基本原理和原则,方法进行描诉,有利于总结经验,拟按照要求准备相关体会材料。看能否有助于入门和提高ss
    发表于 09-09 15:36

    名单公布!【书籍评测活动NO.44】AI for Science:人工智能驱动科学创新

    、污染治理、碳减排三个方面介绍了人工智能为环境科学引入的新价值和新机遇。 第8章探讨了AI for Science在快速发展过程中面临的机遇和挑战,并对“平台科研”模式进行了展望。 申请时间
    发表于 09-09 13:54

    报名开启!深圳(国际)通用人工智能大会将启幕,国内外大咖齐聚话AI

    8月28日至30日,2024深圳(国际)通用人工智能大会暨深圳(国际)通用人工智能产业博览会将在深圳国际会展中心(宝安)举办。大会以“魅力AI·无限未来”为主题,致力于打造全球通用人工智能领域集产品
    发表于 08-22 15:00

    FPGA在人工智能中的应用有哪些?

    定制化的硬件设计,提高了硬件的灵活性和适应性。 综上所述,FPGA在人工智能领域的应用前景广阔,不仅可以用于深度学习的加速和云计算的加速,还可以针对特定应用场景进行定制化计算,为人工智能技术的发展提供有力支持。
    发表于 07-29 17:05

    5G智能物联网课程之Aidlux下人工智能开发(SC171开发套件V2)

    5G智能物联网课程之Aidlux下人工智能开发(SC171开发套件V2) 课程类别 课程名称 视频课程时长 视频课程链接 课件链接 人工智能 参赛基础知识指引 14分50秒 https
    发表于 05-10 16:46

    5G智能物联网课程之Aidlux下人工智能开发(SC171开发套件V1)

    课程类别 课程名称 视频课程时长 视频课程链接 课件链接 人工智能 参赛基础知识指引 14分50秒 https://t.elecfans.com/v/25508.html *附件:参赛基础知识指引
    发表于 04-01 10:40

    人工智能AI芯片的概述

    人工智能(AI)技术的快速发展已经成为当今科技领域的热点话题。
    的头像 发表于 02-29 09:10 5271次阅读

    嵌入式人工智能的就业方向有哪些?

    于工业、农业、医疗、城市建设、金融、航天军工等多个领域。在新时代发展背景下,嵌入式人工智能已是大势所趋,成为当前最热门的AI商业化途径之一。
    发表于 02-26 10:17