0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

Keras之父:目前很多深度学习领域的论文都是无意义

DPVg_AI_era 2017-12-29 11:41 次阅读

Keras之父、谷歌大脑人工智能深度学习研究员François Chollet最新撰写了一本深度学习Python教程实战书籍《Python深度学习》,书中介绍了深度学习使用Python语言和强大Keras库,详实新颖。

近日,François Chollet接受了采访,就“深度学习到底是什么”、“Python为何如此广受欢迎”、“目前深度学习面临的主要挑战”等议题进行了回答。他认为,目前很多深度学习领域的论文都是无意义的,因为这些研究使用了不科学、不规范的研究方法。

关于本人

问:您主要的工作内容是什么?

答:我在谷歌大脑团队工作,花了很多时间开发Keras。我也参加TensorFlow的工作。最近我主要在写机器学习计算机视觉、将深度学习应用于定理证明等方面的论文。我的主要研究兴趣是理解AI中的抽象和推理问题,如何从感知得到抽象的、高度概括的模型。

深度学习的本质、挑战、和未来

问:深度学习到底是什么?

答:深度学习是机器学习的一种具体方法。与以前的方法相比,它更加强大和灵活。在大多数应用程序中,我们所说的“深度学习”是指一种把大量由人类注释的数据转换为以与人类相似的方式自动注释新数据的软件。您可以通过这种方式自动完成很多不同的任务。深度学习尤其擅长理解“感知”数据,如图像、视频或声音。

我来举例说明。假设有很多图片都带有相关联标签(如“猫”、“狗”)。深度学习可以让你自动将数据转换到一个“了解”如何把图片映射到标签的系统,只需从示例中学习,无需任何手动调整或自定义工程。然后这种系统可以被应用到新的数据,将标记图片任务有效自动化。

同样,你可以将深度学习应用于机器翻译、语音识别、文本到语音转换,光学字符识别等问题。

问:深度学习社区现在面临的主要挑战是什么?

答:打击炒作、发展伦理意识、获得科学严谨性。

炒作:对人工智能的大肆炒作正在危害这个领域。一些人正荒谬地夸大目前AI取得的进展,还说人工智能已把人类逼到了绝境。但事实并非如此。如果我们把目标设得极高,却又不能实现,就是逼着公众站在我们的对立面上。而且,炒作AI这件事,本质上是不诚实的,对公众讨论也产生了危害。

伦理: 现在部署人工智能系统的大多数人来自单一背景,他们往往没有意识到自己所构建的系统给人们带来了道德影响和副作用。这将成为一个问题,因为这个群体所拥有的权力会越来越大。我们需要更多地讨论这些问题,并提高人们对不道德使用AI的潜在行为的觉察力,例如具有偏见性的预测模型会影响公众生活,或以危险的方式操纵AI。

科学:每天都有大量的深度学习论文发表,其中大多数并没有真正产生任何有意义的新知识,因为这些论文没有遵循科学的研究方法。他们以模糊的方式“评估”模型,或者在他们的训练数据上测试过度拟合模型(尤其是生成模型和强化学习,这是深度学习研究中发展最快的两个主题),仅在MNIST上评估模型等。深度学习简直是科学的重灾区。同行评审通常不会以有意义的方式解决这些问题,也许部分原因是大多数同行评审员进入这个领域最多才一两年。如果想要取得更快的进展,那么当涉及研究可重复性、基线、模型评估和统计显著性时,我们需要更加严谨。我们目前的激励机制是与科学相对立的:发表论文是被鼓励的。如果你的研究听起来既复杂又神秘,很难被正确评估研究重要性,那么发表论文就容易多了。

问:你认为深度学习的未来是什么?

答:我期望AI未来能把“直观的”模式识别模块与正式推理模块相结合。我也希望AI能够演变得更像自动化软件开发的形式,借用目前软件工程中的很多模式和实践。

写书动机

问:你出版了一本新书《Python深度学习》。为什么要写这本书呢?

答:写这本书的原因是,我想推出一个课程,来教那些已有Python编程能力,但没有机器学习背景的人。

Python为何广受欢迎

问:Python应该是目前发展最快的编程语言,至少在高收入国家是这样。为什么Python如此受欢迎?

答:我爱Python。学习Python很容易上手,当你习惯使用它之后,会越来越高效。与我使用过的大多数其他语言相比,Python非常直观和优雅。但是Python真正的杀手锏并不在于语言本身,而是周围的生态系统和社区。无论你需要做什么,比如解析特定的文件格式或与特定系统连接,几乎有一个Python库在做这件事,你不必花时间去做。在数据科学和机器学习方面尤其如此,有很多很棒的工具:numpy,pandas,scikit-learn,plotting libraries等,这使得Python成为一种非常高效的语言。

我喜欢Python的另一个原因是,它并不是一个领域特定的语言,而是多领域的交叉点,从网站开发到数据科学和系统管理。这意味着无需切换到新语言来将Keras模型部署为Web API。无论你需要做什么,无论是启动一个web应用程序,查询一个REST API,还是解析一些文件,训练最先进的深度学习模型,Python通常都会是一个很好的选择。

给初学者的建议

问:有些声音认为进入机器学习有壁垒。您如何看待?

答:我不同意。在过去的5年中,进入机器学习领域变得非常容易。当然,5-7年前这很艰难。你可能需要研究生教育。你需要用C ++或Matlab来编写大量的低级算法。我经历过这些。而现在不一样了。你只需要Python,很容易上手,你有权限访问高级和易于使用的工具(如Keras)。另外,你可以在网上学到很多非常高质量的资源,你可以在Kaggle上练习现实世界的问题。学习从未如此简单。

问:对于初学者来说,最重要的是什么?

答:最重要的是要深刻了解深度学习能做什么,不能做什么。去感受一些best practice,比如如何正确评估模型,如何防止过度拟合。这需要把正式解释(formal explanations)和对现实问题的广泛实践结合起来。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 人工智能
    +关注

    关注

    1789

    文章

    46636

    浏览量

    236991
  • python
    +关注

    关注

    55

    文章

    4766

    浏览量

    84369
  • 深度学习
    +关注

    关注

    73

    文章

    5463

    浏览量

    120880

原文标题:Keras之父:大多数深度学习论文都是垃圾,炒作AI危害很大

文章出处:【微信号:AI_era,微信公众号:新智元】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    GPU深度学习应用案例

    GPU在深度学习中的应用广泛且重要,以下是一些GPU深度学习应用案例: 一、图像识别 图像识别是深度学习
    的头像 发表于 10-27 11:13 278次阅读

    FPGA做深度学习能走多远?

    。FPGA的优势就是可编程可配置,逻辑资源多,功耗低,而且赛灵思等都在极力推广。不知道用FPGA做深度学习未来会怎样发展,能走多远,你怎么看。 A:FPGA 在深度学习
    发表于 09-27 20:53

    深度学习中的时间序列分类方法

    时间序列分类(Time Series Classification, TSC)是机器学习深度学习领域的重要任务之一,广泛应用于人体活动识别、系统监测、金融预测、医疗诊断等多个
    的头像 发表于 07-09 15:54 644次阅读

    深度学习中的无监督学习方法综述

    深度学习作为机器学习领域的一个重要分支,近年来在多个领域取得了显著的成果,特别是在图像识别、语音识别、自然语言处理等
    的头像 发表于 07-09 10:50 380次阅读

    深度学习与nlp的区别在哪

    深度学习和自然语言处理(NLP)是计算机科学领域中两个非常重要的研究方向。它们之间既有联系,也有区别。本文将介绍深度学习与NLP的区别。
    的头像 发表于 07-05 09:47 746次阅读

    keras模型转tensorflow session

    和训练深度学习模型。Keras是基于TensorFlow、Theano或CNTK等底层计算框架构建的。TensorFlow是一个开源的机器学习框架,由Google Brain团队开发。
    的头像 发表于 07-05 09:36 435次阅读

    keras的模块结构介绍

    Keras是一个高级深度学习库,它提供了一个易于使用的接口来构建和训练深度学习模型。Keras
    的头像 发表于 07-05 09:35 294次阅读

    人工智能深度学习的五大模型及其应用领域

    随着科技的飞速发展,人工智能(AI)技术特别是深度学习在各个领域展现出了强大的潜力和广泛的应用价值。深度学习作为人工智能的一个核心分支,通过
    的头像 发表于 07-03 18:20 3330次阅读

    TensorFlow与PyTorch深度学习框架的比较与选择

    深度学习作为人工智能领域的一个重要分支,在过去十年中取得了显著的进展。在构建和训练深度学习模型的过程中,
    的头像 发表于 07-02 14:04 835次阅读

    深度学习与传统机器学习的对比

    在人工智能的浪潮中,机器学习深度学习无疑是两大核心驱动力。它们各自以其独特的方式推动着技术的进步,为众多领域带来了革命性的变化。然而,尽管它们都属于机器
    的头像 发表于 07-01 11:40 1094次阅读

    深度学习在计算机视觉领域的应用

    随着人工智能技术的飞速发展,深度学习作为其中的核心技术之一,已经在计算机视觉领域取得了显著的成果。计算机视觉,作为计算机科学的一个重要分支,旨在让计算机能够像人类一样理解和解析图像和视频中的信息。而
    的头像 发表于 07-01 11:38 630次阅读

    深度解析深度学习下的语义SLAM

    随着深度学习技术的兴起,计算机视觉的许多传统领域都取得了突破性进展,例如目标的检测、识别和分类等领域。近年来,研究人员开始在视觉SLAM算法中引入
    发表于 04-23 17:18 1222次阅读
    <b class='flag-5'>深度</b>解析<b class='flag-5'>深度</b><b class='flag-5'>学习</b>下的语义SLAM

    cube AI导入Keras模型出错怎么解决?

    我尝试过cube AI的version7.1.0、6.0.0、5.1.2、4.1.0,导入Keras都是这个报错,求解答 E010(InvalidModelError): Couldn&
    发表于 03-18 06:39

    为什么深度学习的效果更好?

    导读深度学习是机器学习的一个子集,已成为人工智能领域的一项变革性技术,在从计算机视觉、自然语言处理到自动驾驶汽车等广泛的应用中取得了显著的成功。深度
    的头像 发表于 03-09 08:26 573次阅读
    为什么<b class='flag-5'>深度</b><b class='flag-5'>学习</b>的效果更好?

    目前主流的深度学习算法模型和应用案例

    深度学习在科学计算中获得了广泛的普及,其算法被广泛用于解决复杂问题的行业。所有深度学习算法都使用不同类型的神经网络来执行特定任务。
    的头像 发表于 01-03 10:28 1646次阅读
    <b class='flag-5'>目前</b>主流的<b class='flag-5'>深度</b><b class='flag-5'>学习</b>算法模型和应用案例