0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

制造业人工智能的场景应用落地现状、难点和建议

jf_09010900 来源:jf_09010900 作者:jf_09010900 2024-10-12 09:49 次阅读

制造业应用人工智能可以提高制造业的生产效率,推动制造业高质量发展和竞争力提升,促进国民经济的持续稳定增长。近年来,制造业人工智能的场景化应用落地不断推进,但在落地过程中遇到一些难点。本文对于制造企业应用人工智能的场景化落地的现状和难点进行分析,提出制造业人工智能的场景应用落地的建议。

制造业人工智能的场景应用落地的现状

人工智能在中国制造业应用市场规模逐年增加,但是目前总量不高。根据德勤数据,2023年人工智能在中国制造业应用市场规模总量仅为56亿元。 根据头豹研究院数据,2022年中国人工智能行业市场规模为3,716亿元,预计2027年将达15,372亿元。与此相比,制造行业人工智能应用市场规模目前总量不高。

人工智能在制造业领域的应用普及率目前较低。根据凯捷统计数据显示,截至2023年,欧洲顶级制造企业的人工智能应用普及率超过30%,日本制造企业人工智能应用普及率接近30%,美国制造企业为28%,而中国制造企业的人工智能应用普及率尚不足11%,需要通过更多的场景应用落地提高应用普及率。

人工智能在制造业的现有落地场景、技术应用的现状有进步但需要优化。人工智能在制造业的应用贯穿于设计、生产、管理和服务等各个环节,以下是一些常见的落地场景及技术应用现状:

制造业人工智能的场景应用落地的难点

1.制造业智能化基础和智能化需求差异大,难以采用统一的人工智能解决方案,影响规模化的场景应用落地

不同应用场景的智能化基础存在较大差异,有些具备了较为完善的数字化基础,有些信息基础设施落后。根据工信部数据统计显示,目前我国32%的制造企业达到了智能制造能力成熟度一级水平,21%的企业达到了二级,12%的企业达到三级,四级及以上是成熟度最高等级,其企业占比达4%,其他31%企业都尚未达到最低的一级成熟度的水平。同时,不同的应用场景有不同的智能化需求,对人工智能包括算力、算法、数据的需求和配置也不同。应用场景智能化基础不同和智能化需求不同,决定了其应用人工智能起点不同,场景化落地的条件和实施方式也会随之不同,制造业人工智能场景应用解决方案需要进行定制化开发,以适应特定的生产流程、设备配置、数据格式等,导致难以复制推广统一的人工智能解决方案实施规模化的场景落地。

2.场景应用要求的高度实时性、可靠性和准确性,增加了场景应用落地的难度

制造业场景应用对高度实时性、可靠性和准确性的要求,源于制造业生产流程的连续性和设备的精密性以及对产品质量和安全性的严格标准。制造业生产需要实时控制和响应,以确保生产流程的连续性和稳定性。目前有些通用计算架构较难满足制造业实时性的计算要求,端侧推理需求迫切。电商平台的推荐系统达到60%-70%的准确率算是比较高的精准度,而制造业部分核心环节对推荐参数的准确性要求非常高,一旦参数出现问题,将对生产、制造等环节产生巨大影响。制造企业不敢轻易应用人工智能技术于具体的生产场景和生产流程,担心应用人工智能导致生产流程停顿、生产过程出问题、产品质量出问题。场景应用要求的高度实时性、可靠性和准确性,增加了场景应用落地的难度。

3.制造业人工智能应用场景的多样性增加了应用落地成本,企业担心应用落地的成本效益,影响了场景应用落地

一是应用场景的多样性增加了应用落地成本,影响了场景应用的落地。以大模型为例,很多企业参与场景应用落地基本采用“一个场景一个模型”的小作坊模式,需要针对每个场景独立地完成模型选择、数据处理、模型优化、模型迭代等开发环节,导致周期长、成本高。场景应用解决方案需要进行定制化开发,以适应特定的生产流程、设备配置等,这增加了软件开发和硬件设备的成本,这些因素影响了场景应用的落地。

二是技术人员成本、算力成本、维护和运营成本支出较高等因素,制约了制造业人工智能的应用落地。在技术人员成本方面,传统制造业企业缺乏对人工智能技术精通的技术人员,从外部招聘面临高昂的人力成本。算力成本除了硬件设备的购置和维护费用,硬件设备和软件系统需要定期升级或更换,会产生较高的成本,电力消耗也是算力成本的重要组成部分。在维护和运营成本方面,硬件设备的维护、软件系统的维护、技术支持服务、数据的维护和处理、故障诊断和修复等都需要投入大量成本,影响制造业人工智能的应用落地。

制造业人工智能的场景应用落地的建议

1.对于制造企业:提高场景应用解决方案的通用性,促进场景应用规模化落地

一是补强智能化基础薄弱的应用场景的基础设施建设,搭建基本的网络设施和硬件设备,为人工智能解决方案的实施打下基础;二是了解不同制造场景的智能化需求,对各个制造环节和场景的智能化需求有深入的理解和洞察,将不同场景下的需求进行归纳和总结,提炼出核心功能和需求,基于这些核心功能和需求设计人工智能解决方案,提高解决方案的通用性和可扩展性。三是提高人工智能解决方案实施的通用性。定义通用的接口标准和协议,使不同模块、系统之间能够无缝对接和交互,提高人工智能解决方案的通用性。

2.对于管理机构:及时制订细分应用场景的具体操作指南,指导场景应用落地

一是对制造业不同细分行业的细分场景进行深入调研,了解具体生产流程、痛点及需求。对目前典型应用场景分类的基础上进行下沉,对更加细分的应用场景进行识别,归纳和提炼出各细分场景的人工智能解决方案,针对每个分类制定具体的操作指南。二是根据细分应用场景特点,在操作指南里推荐适合的机器学习深度学习算法,提供模型训练的具体步骤和参数调优方法,提高模型性能。提供人工智能模型的部署方案,包括硬件要求、软件环境配置等。有了应用场景分类的系统设计和具体的操作指南,可以更加具体地指导场景应用的落地。

3.对于产业链:通过生态合作降低场景应用落地成本,提高场景应用落地效率

一是通过产业链的生态合作产出性价比高的人工智能硬件和软件,减少投入成本。在模型方面通过减小模型大小,降低计算资源和存储需求从而降低成本。二是通过生态合作研发更先进、更高效的人工智能算法和模型,降低应用场景对数据处理、分析和决策的需求,减少计算资源和数据处理的成本。通过生态合作建立数据共享机制,促进不同应用场景的数据共享,提高数据资源的利用率,有效解决应用场景的多样化导致的数据处理难度,提高数据处理的效率和准确性,降低数据处理成本,提高场景应用落地的效率。

4.对于电信运营商:通过提供稳定高速的网络、丰富的存储资源和安全的数据服务,推进场景应用稳步落地

对于电信运营商来说,需要提供高速稳定的网络连接,确保制造企业能够实时传输和处理大量的数据,为人工智能应用提供坚实的网络基础。搭建云计算平台,为制造业提供强大的计算能力和存储资源,支持人工智能模型的训练和部署。为制造业应用人工智能提供安全高效的数据服务。如提供数据采集、分析服务,帮助企业打破数据壁垒,实现数据汇聚和综合利用,推进场景应用稳步落地。

中服云(www.cserver.com.cn)——长期致力于工业物联网平台及工业APP的研发和服务,工业物联网技术业界领先。全力打造自动数据采集获取技术+数据分析价值挖掘技术两个核心技术,基于“平台+APPS”的产品架构思想。从数字化底座、到智能化生产、再到生产环境的智能化,形成了完整的“中服云”数智化产品品牌。致力于业务层和物理层的深度融合,从根本上解决智能化的核心问题。

审核编辑 黄宇

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 人工智能
    +关注

    关注

    1791

    文章

    47294

    浏览量

    238578
收藏 人收藏

    评论

    相关推荐

    制造业数字化转型的难点

    制造业数字化转型是提升竞争力的重要途径,我国制造业面临数据标准问题和数据安全问题,亟需完善制度环境,推动制造业数字化水平不断提升。
    的头像 发表于 12-04 10:27 253次阅读
    <b class='flag-5'>制造业</b>数字化转型的<b class='flag-5'>难点</b>

    嵌入式和人工智能究竟是什么关系?

    应用场景。例如,在智能家居领域,嵌入式系统可以控制各种智能设备,如智能灯泡、智能空调等,而人工智能
    发表于 11-14 16:39

    生成式AI在制造业的应用现状和前景展望

    在上一期《IBM 企业级 AI 为跨国制造业智能化注入新动力》的文章中,我们重点分享了 IBM 企业级AI驱动智能制造升级的若干场景,视觉检
    的头像 发表于 11-06 17:06 677次阅读

    《AI for Science:人工智能驱动科学创新》第一章人工智能驱动的科学创新学习心得

    。 5. 展望未来 最后,第一章让我对人工智能驱动的科学创新未来充满了期待。随着技术的不断进步和应用场景的拓展,AI将在更多领域发挥关键作用,从基础科学到应用科学,从理论研究到实践应用,都将迎来前所未有
    发表于 10-14 09:12

    risc-v在人工智能图像处理应用前景分析

    和使用该技术,无需支付专利费或使用费。这大大降低了人工智能图像处理技术的研发成本,并吸引了大量的开发者、企业和研究机构参与其生态建设。 灵活性则体现在RISC-V可以根据不同的应用场景进行定制和优化,从而
    发表于 09-28 11:00

    智能制造行业现状与发展趋势

    智能制造行业作为现代制造业的重要组成部分,正经历着快速的发展与变革。以下是对智能制造行业现状与发
    的头像 发表于 09-15 14:26 1384次阅读

    名单公布!【书籍评测活动NO.44】AI for Science:人工智能驱动科学创新

    芯片设计的自动化水平、优化半导体制造和封测的工艺和水平、寻找新一代半导体材料等方面提供帮助。 第6章介绍了人工智能在化石能源科学研究、可再生能源科学研究、能源转型三个方面的落地应用。 第7章从环境监测
    发表于 09-09 13:54

    FPGA在人工智能中的应用有哪些?

    定制化的硬件设计,提高了硬件的灵活性和适应性。 综上所述,FPGA在人工智能领域的应用前景广阔,不仅可以用于深度学习的加速和云计算的加速,还可以针对特定应用场景进行定制化计算,为人工智能技术的发展提供有力支持。
    发表于 07-29 17:05

    欧时制造业产品及解决方案助力中国制造业企业工业数字化转型

    制造、“双创”、互联网、物联网、战略新兴产业等多个有针对性的规划,将逐步落地并对我国制造业产生积极影响。大力建设智能工厂、前瞻布局新兴赛道、加速科技成果转化……把握科技创新和产业发展趋
    的头像 发表于 07-24 17:42 686次阅读

    深圳恒兴隆|制造业的新星:高光超精电主轴的崛起...

    的高精度和高稳定性要求。三、高光超精电主轴的未来发展趋势随着制造业的不断发展和技术的不断进步,高光超精电主轴将继续保持其领先地位,并呈现出以下几个发展趋势:1、智能化:借助物联网、大数据等先进技术,高光超精
    发表于 05-13 09:55

    制造业企业数字化转型难点剖析及解决之法

    升级的步伐,仍然是众多制造企业面临的难题。本期艾瑞微课堂带领大家从制造企业数字化转型实践与难点制造企业数字化转型思路、破局点之高价值场景
    的头像 发表于 04-03 10:53 949次阅读

    发改委:装备制造业和高技术制造业投资快速增长,展示产业升级潜力

    关于有记者询问“有数据显示,1至2月装备制造业和高技术制造业投资显著超越整个制造业投资增速。那么,这个领域的发展现状以及下阶段如何培育壮大战略性新兴产业呢?”,刘苏社详细解答道:
    的头像 发表于 03-21 16:15 1001次阅读

    人工智能赋能制造业:精益转型的新机遇

    随着科技的飞速发展,人工智能(AI)已经渗透进我们生活的方方面面,而在制造业领域,AI技术的运用更是打开了精益转型的大门。本文将探讨如何把握人工智能的新机遇,推动制造业实现精益转型,以
    的头像 发表于 03-05 09:20 439次阅读

    嵌入式人工智能的就业方向有哪些?

    嵌入式人工智能的就业方向有哪些? 在新一轮科技革命与产业变革的时代背景下,嵌入式人工智能成为国家新型基础建设与传统产业升级的核心驱动力。同时在此背景驱动下,众多名企也纷纷在嵌入式人工智能领域布局
    发表于 02-26 10:17

    深入剖析人工智能应用价值与场景分析

    人工智能进入生成式阶段,本报告重点对人工智能应用价值与场景分析,并对企业AI应用突破方向与规划建议,针对营销/服务、办公协同、研发、企业安全等各个环节进行深入剖析,展开企业AI
    发表于 01-05 11:15 328次阅读
    深入剖析<b class='flag-5'>人工智能</b>应用价值与<b class='flag-5'>场景</b>分析