0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

碳化硅生产难点是什么

芯长征科技 来源:半导体材料与工艺 2024-10-16 13:58 次阅读

第一代半导体材料以传统的硅(Si)和锗(Ge)为代表,是集成电路制造的基础,广泛应用于低压、低频、低功率的晶体管探测器中,90%以上的半导体产品是用硅基材料制作的; 第二代半导体材料以砷化镓(GaAs)、磷化铟(InP)和磷化镓(GaP)为代表, 相对硅基器件具有高频、高速的光电性能,广泛应用于光电子和微电子领域; 第三代半导体材料以碳化硅(SiC)、氮化镓(GaN)、氧化锌(ZnO)、金刚 石(C)、氮化铝(AlN)等新兴材料为代表。

wKgZomcPVhuAT17GAACurPtyA8Q751.jpg

碳化硅是第三代半导体产业发展的重要基础材料,碳化硅功率器件以其优异的耐高压、耐高温、低损耗等性能,能够有效满足电力电子系统的高效率、小型化和轻量化要求。

因其优越的物理性能:高禁带宽度(对应高击穿电场和高功率密度)、高电导率、高热导率,有望成为未来最被广泛使用的制作半导体芯片的基础材料。特别是在新能源汽车、光伏发电、轨道交通、智能电网等领域具有明显优势。

碳化硅技术壁垒是什么?碳化硅技术壁垒有哪些?

SiC 生产过程分为SiC 单晶生长、外延层生长及器件制造三大步骤,对应的是产业链衬底、外延、器件与模组四大环节。

主流制造衬底的方式首先以物理气相升华法,在高温真空环境下将粉料升华,通过温场的控制在籽晶表面生 长出碳化硅晶体。以碳化硅晶片为衬底,使用化学气相沉积法,在晶片上淀积一层单晶形成外延片。其中,在导电型碳化硅衬底上生长碳化硅外延层,可制成功率器件,主要应用于电动车、光伏等领域;在半绝缘型碳化硅衬底上生长氮化镓 外延层,可进一步制成射频器件,应用于 5G 通讯等领域。

就目前而言,碳化硅产业链中碳化硅衬底的技术壁垒最高,碳化硅衬底生产难度最高。

SiC的生产瓶颈尚未完全彻底的解决,原料晶柱的质量不稳定存在良率问题,这就导致了SiC器件的成本过高。硅材料长晶平均只要3天即可长成一根晶棒,但碳化硅晶棒则需要一周,一般的硅晶棒可以长200公分的长,但一根碳化硅的晶棒只能长出2公分。而且SiC本身属于硬脆性材料,由其制成的晶圆,在使用传统的机械式切割晶圆划片时,极易产生崩边,影响产品良率及可靠性。SiC基板与传统的硅晶锭有很大不同,从设备、工艺、处理到切割的一切都需要进行开发,以处理碳化硅。

碳化硅产业链主要分为衬底、外延、器件和应用四大环节,衬底材料是产业链的基础,外延材料是器件制造的关键,器件是产业链的核心,应用是产业发展的动力。产业上游利用原材料通过物 理气相升华法等方法制成衬底材料,再利用化学气相沉积法等方法生长外延材料, 产业中游基于上游材料制成射频器件、功率器件等器件,最终应用于下游 5G 通信、电动汽车、轨道交通等。其中,衬底和外延共占产业链成本 60%,是产业链主要价值所在。

wKgZomcPVjSAd5JyAABY_dM4j_Q015.jpg

SiC衬底:SiC晶体通常用Lely法制造,国际主流产品正从4英寸向6英寸过渡,且已经开发出8英寸导电型衬底产品,国内衬底以4英寸为主。由于现有的6英寸的硅晶圆产线可以升级改造用于生产SiC器件,所以6英寸SiC衬底的高市占率将维持较长时间。

碳化硅衬底工艺复杂,制作难度大。碳化硅衬底是一种由碳和硅两种元素组成的 化合物半导体单晶材料。目前行业内主要以高纯碳粉、 高纯硅粉为原料合成碳化 硅粉,在特殊温场下,采用成熟的物理气相传输法(PVT 法),在晶体生长炉中 生长不同尺寸的碳化硅晶锭,最后经过加工、切割、研磨、抛光、清洗等多道工 序产出碳化硅衬底。

稳定量产性能稳定的高品质碳化硅晶片的技术难点有:

1)由于晶体需要在 2000℃以上的高温密闭环境生长,对控温要求极高;

2)由于碳化硅存在 200 多种晶体结构,但只有少数几种结构的单晶型碳化硅才是 所需的半导体材料,在晶体生长过程中需要精确控制硅碳比、生长温度梯度、晶 体生长速率以及气流气压等参数

3)气相传输法下,碳化硅晶体生长的扩径技术难度极大;

4)碳化硅硬度与金刚石接近,切割、研磨、抛光技术难度大。

SiC外延:通常用化学气相沉积(CVD)方法制造,根据不同的掺杂类型,分为n型、p型外延片。国内瀚天天成、东莞天域已能提供4寸/6寸SiC外延片。对于SiC外延来说,高压领域控制难,SiC外延质量对SiC器件影响较大。而且外延设备被行业四大龙头企业 Axitron、 LPE、TEL 和 Nuflare 所垄断。

碳化硅外延片,是指在原有碳化硅衬底 上生长了一层有一定要求的、与衬底晶相同的单晶薄膜(外延层)的碳化硅片。外延生长主要使用 CVD(Chemical Vapor Deposition,化学气相沉积)设备或者 MBE(Molecular Beam Epitaxy,分子束外延)设备。由于碳化硅器件是直接在外延层制造,外延质量的好坏直接影响了器件的性能和良率,随着器件需求耐压性能的不断提高,对应的外延层厚度就越厚,控制难度也就越高。一般电压在 600V 左右时,所需要的外延层厚度约在 6 微米左右;电压在 1200-1700V 之间时,所需要的外延层厚度就达到 10-15 微米。如果电压达到一万伏以上时,可能就需要 100 微米以上的外延层厚度。而随着外延层厚度的不断增加,对厚度和电阻率均匀性以及缺陷密度的控制就变得愈发困难。

SiC器件:国际上600~1700V SiC SBD、MOSFET已经实现产业化,主流产品耐压水平在1200V以下,封装形式以TO封装为主。价格方面,国际上的SiC产品价格是对应Si产品的5~6倍,正以每年10%的速度下降,随着上游材料器件纷纷扩产上线,未来2~3年后市场供应加大,价格将进一步下降,预计价格达到对应Si产品2~3倍时,由系统成本减少和性能提升带来的优势将推动SiC逐步占领Si器件的市场空间。

传统封装基于硅基,三代半导体材料具有全新设计。若将传统硅基封装结构用于宽禁带半导体功率器件时,会在频率、散热、可靠性等方面带来新的问题与挑战。SiC 功率器件对寄生电容和寄生电感更加敏感。相比于 Si 器件 SiC 功率芯片的开 关速度更快,这会对驱动电压的波形带来过冲和震荡,引起开关损耗的增加,严重时甚至会引起功率器件的误开关。此外 SiC 功率器件工作温度更高,对散热的 要求也更高。

宽禁带半导体功率封装领域研发出多种不同结构。传统 Si 基功率模块封装不再适 用。针对传统 Si 基功率模块封装存在寄生参数过高,散热效率差的问题,SiC 功 率模块封装在结构上采用了无引线互连(wireless interconnection)和双面散热 (double-side cooling)技术,同时选用了导热系数更好的衬底材料,并尝试在模 块结构中集成去耦电容、温度/电流传感器以及驱动电路等,研发出了多种不同的模块封装技术。而且在SiC器件制造存在较高的技术壁垒,生产成本很高。

碳化硅器件是通过 CVD 在碳化硅衬底上叠层外延膜,经过清洗、氧化、光刻、刻蚀、去光阻、离子注入、化学气相沉积沉淀氮化硅、抛光、溅镀、后加工等步骤后在 SiC 单晶基板上形成元件结构所得。其中,SiC 功率器件主要包括 SiC 二极管、SiC 晶体管和 SiC 功率模块。受制于上游材料生产速度慢、良品率低等原因,碳化硅器件具有较高制造成本。

此外,碳化硅器件制造具有一定技术难度:

1)需要开发与碳化硅材料特性吻合的特定工艺,如:SiC 具有高熔点使传统热扩散失效,需要采用离子注入掺杂法,并精准控制温度、升温速率、持续时间、气体流量等参数;SiC 对化学溶剂具有惰性,应采用干刻蚀等方法,并优化和开发掩膜材料、气体混合物、侧壁斜率的控制、蚀刻速率、侧壁粗糙度等;

2)碳化硅晶片上金属电极的制造要求接触电阻低于 10- 5Ω2,符合要求的电极材料 Ni 和 Al 在 100℃ 以上时具有较差热稳定性,但具有较好热稳定性的 Al/Ni/W/Au 复合电极材料接触比电阻高 10- 3Ω2;

3)SiC 切割磨损高,SiC 硬度仅次于金刚石,对切割、研磨、抛光等技术提出了更高的要求。

而且,沟槽型碳化硅功率器件具有更大制造难度。根据器件结构的不同,碳化硅功率器件主要可以分为平面型器件和沟槽型器件。平面型碳化硅功率器件具有较好的单位一致性,制作工艺简单,但易产生JFET 效应,具有较高的寄生电容和通态电 阻。相较于平面型器件,沟槽型碳化硅功率器件单位一致性较低,具有更复杂的制作工艺,但沟槽结构有利于增加器件单位密度,不易产生 JFET 效应,有利于解 决沟道迁移率低等问题,具有导通电阻小、寄生电容小、开关能耗低等优良性能,具有显著的成本优势和性能优势,已成为碳化硅功率器件发展的主流方向。根据 Rohm 官网,ROHM Gen3 结构(Gen1 Trench 结构)仅为 Gen2(Plannar2)芯片 面积的 75%,且同一芯片尺寸下 ROHM Gen3 结构导通电阻降低 50%。

碳化硅衬底、外延、前段、研发费用和其他分别在碳化硅器 件制造成本中占比 47%,23%,19%,6%,5%。

最后我们再着重分解一下碳化硅产业链中衬底的技术壁垒。

碳化硅衬底生产过程与硅基衬底类似,但是难度更大。

碳化硅衬底的制作流程一般包括原料合成、晶体生长、晶锭加工、晶棒切割、晶片研磨、抛光、清洗等环节。

wKgZomcPVkuAHOkOAABaz6Bp2os362.jpg

其中晶体生长阶段为整个流程的核心,该步骤决定了碳化硅衬底的电学性质。

碳化硅材料在一般条件下很难液相生长,如今市场流行的气相生长法,生长温度在 2300℃以上,而且需要精确调控生长温度,整个操作过程几乎难以观测,稍有差错就会导致产品报废。相比之下,硅材料只需要 1600℃,要求低很多。制备碳化硅衬底还面临长晶速度慢,晶型要求高等困难。碳化硅晶圆生长约需要 7 至 10 天,而硅棒拉晶只需要 2 天半。而且碳化硅是硬度仅次于金刚石的材料,切割、研磨、抛光时候也会损失掉的很多,产出比只有 60%。

我们知道碳化硅衬底的尺寸做大是趋势,随着尺寸不断增大,扩径技术的要求也越来越高。需要综合多方面的技术控制要素,才能实现晶体的迭代扩径生长。

转载:半导体材料与工艺

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 集成电路
    +关注

    关注

    5388

    文章

    11562

    浏览量

    362043
  • 半导体
    +关注

    关注

    334

    文章

    27442

    浏览量

    219408
  • SiC
    SiC
    +关注

    关注

    29

    文章

    2831

    浏览量

    62701
  • 碳化硅
    +关注

    关注

    25

    文章

    2774

    浏览量

    49099

原文标题:碳化硅技术壁垒有哪些?

文章出处:【微信号:芯长征科技,微信公众号:芯长征科技】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    碳化硅压敏电阻 - 氧化锌 MOV

    碳化硅圆盘压敏电阻 |碳化硅棒和管压敏电阻 | MOV / 氧化锌 (ZnO) 压敏电阻 |带引线的碳化硅压敏电阻 | 硅金属陶瓷复合电阻器 |ZnO 块压敏电阻 关于EAK碳化硅压敏
    发表于 03-08 08:37

    新型电子封装热管理材料铝碳化硅

    新型材料铝碳化硅解决了封装中的散热问题,解决各行业遇到的各种芯片散热问题,如果你有类似的困惑,欢迎前来探讨,铝碳化硅做封装材料的优势它有高导热,高刚度,高耐磨,低膨胀,低密度,低成本,适合各种产品的IGBT。我西安明科微电子材料有限公司的赵昕。欢迎大家有问题及时交流,谢谢
    发表于 10-19 10:45

    碳化硅的历史与应用介绍

    硅与碳的唯一合成物就是碳化硅(SiC),俗称金刚砂。SiC 在自然界中以矿物碳硅石的形式存在,但十分稀少。不过,自1893 年以来,粉状碳化硅已被大量生产用作研磨剂。碳化硅用作研磨剂已
    发表于 07-02 07:14

    碳化硅深层的特性

    碳化硅的颜色,纯净者无色透明,含杂质(碳、硅等)时呈蓝、天蓝、深蓝,浅绿等色,少数呈黄、黑等色。加温至700℃时不褪色。金刚光泽。比重,具极高的折射率, 和高的双折射,在紫外光下发黄、橙黄色光,无
    发表于 07-04 04:20

    CISSOID碳化硅驱动芯片

    哪位大神知道CISSOID碳化硅驱动芯片有几款,型号是什么
    发表于 03-05 09:30

    碳化硅半导体器件有哪些?

      由于碳化硅具有不可比拟的优良性能,碳化硅是宽禁带半导体材料的一种,主要特点是高热导率、高饱和以及电子漂移速率和高击场强等,因此被应用于各种半导体材料当中,碳化硅器件主要包括功率二极管和功率开关管
    发表于 06-28 17:30

    碳化硅基板——三代半导体的领军者

    碳化硅(SiC)即使在高达1400℃的温度下,仍能保持其强度。这种材料的明显特点在于导热和电气半导体的导电性极高。碳化硅化学和物理稳定性,碳化硅的硬度和耐腐蚀性均较高。是陶瓷材料中高温强度好的材料
    发表于 01-12 11:48

    碳化硅器件是如何组成逆变器的?

    进一步了解碳化硅器件是如何组成逆变器的。
    发表于 03-16 07:22

    碳化硅器件的特点是什么

    今天我们来聊聊碳化硅器件的特点
    发表于 03-16 08:00

    什么是碳化硅(SiC)?它有哪些用途?

    什么是碳化硅(SiC)?它有哪些用途?碳化硅(SiC)的结构是如何构成的?
    发表于 06-18 08:32

    碳化硅的应用

    碳化硅作为现在比较好的材料,为什么应用的领域会受到部分限制呢?
    发表于 08-19 17:39

    传统的硅组件、碳化硅(Sic)和氮化镓(GaN)

    传统的硅组件、碳化硅(Sic)和氮化镓(GaN)伴随着第三代半导体电力电子器件的诞生,以碳化硅(Sic)和氮化镓(GaN)为代表的新型半导体材料走入了我们的视野。SiC和GaN电力电子器件由于本身
    发表于 09-23 15:02

    请教碳化硅刻蚀工艺

    最近需要用到干法刻蚀技术去刻蚀碳化硅,采用的是ICP系列设备,刻蚀气体使用的是SF6+O2,碳化硅上面没有做任何掩膜,就是为了去除SiC表面损伤层达到表面改性的效果。但是实际刻蚀过程中总是会在碳化硅
    发表于 08-31 16:29

    归纳碳化硅功率器件封装的关键技术

    的一大难点所在。3 多功能集成封装技术3.1 多功能集成封装技术碳化硅器件的出现推动了电力电子朝着小型化的方向发展,其中集成化的趋势也日渐明显。瓷片电容的集成较为常见,通过将瓷片电容尽可能靠近功率芯片
    发表于 02-22 16:06

    浅谈硅IGBT与碳化硅MOSFET驱动的区别

      硅IGBT与碳化硅MOSFET驱动两者电气参数特性差别较大,碳化硅MOSFET对于驱动的要求也不同于传统硅器件,主要体现在GS开通电压、GS关断电压、短路保护、信号延迟和抗干扰几个方面,具体如下
    发表于 02-27 16:03