0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

提出多目标最优化方法 进而产生柏雷多最优电动汽车充电策略

tnwD_DGgrid 2018-01-16 13:52 次阅读

福州大学电气工程与自动化学院、***元智大学电机工程学系的研究人员关昊亮、王进华、邱伟育,在2017年第12期《电气技术》杂志上撰文,本论文考虑智能电网中家用电动汽车和电动出租车的充电调度问题。充电站可以控制充电速率以最大化其收入;对于底层电力系统,期望最大化其自身的负载因子,从而确保系统的稳定性。

充电站最大化其收入与电力系统最大化其负载因子形成一个多目标优化问题。本文提出多目标最优化方法来解决此多目标优化问题,进而产生柏雷多(Pareto)最优电动汽车充电策略。文末进行数值分析来验证所提出方法的有效性。

近几年来,随着全球能源危机的不断加深、石油资源的日趋枯竭、空气污染、全球气温上升等危害的加剧,各国政府及汽车企业普遍意识到节约能源和减少有害气体的排放是未来汽车技术发展的必然方向[1]。发展电动汽车是解决上述问题的一条途径[2],然而大量的电动汽车接入电网会增加电网整体的负担。

估计到2050年,中国电动汽车的数量将达到2亿,总充电量将达到3.3亿千瓦[3],电动汽车的急剧增加对中国电力供应将造成重要影响。对于不同的电价收取模式,电动汽车会有不同的充电需求、会在不同时段从电网获取电能补给。电网与电动汽车交易模式将渐趋复杂,需要更加先进的电力市场来支撑此变化[4]。

随着电动汽车的大规模增长,对于充电站的充电排程与充电速率的研究就显得尤为重要。充电站作为电网系统的运营商,会最先接触到电动汽车用户,可以通过优化充电站各个充电桩的充电速率,来调节各个时段的电网负载,维护电网稳定[5]。

本文分成几个部分探讨相关议题:首先讨论充电站及其服务对象的数学模型,然后介绍智能电网模式下的电价策略,最后探讨相对应的多目标优化问题并提出解决方法。为了展示方便,本文以30分钟为一个时段(time slot),将一天分为48个时段。

1充电站及其服务对象的讨论(略)

1.1充电站规模

充电站在未来社会中的重要性与现在的加油站类似,为了调节充电站各时段的用电负载量,充电站可以调控家用电动汽车的充电速率,充电速率的范围为5kw/h到15kw/h。本文所用模拟的充电站规模为每个充电站有20个充电桩,最大可同时负担20辆电动汽车进行充电。在充电站进行充电的电动汽车包括插电式电动出租车(Plug-inElectric Taxi, PET)与家用电动汽车。

1.2插电式电动出租车

1.3家用电动汽车

2智能电网的电价策略

电网公司会通过改变电价的高低来引导用电者转移高峰用电量,常见的电价模型有:即时电价(Real-timepricing)、前一天公布的电价(Day-ahead pricing)、分时电价(Time-of-usepricing)、尖峰时间反馈电价(Peak-time rebate pricing)等[10-13]。

本文使用美国宾夕法尼亚州新泽西马里兰互联电力公司(PJM)在2017年5月25日公布的价格(前一日公布的电价),其电价系统在高峰时段和离峰时段的单价并不相同[14]。本文将一小时的电价等值分成2个时段,一日共48个时段做讨论,并利用后面介绍的多目标最优化方法,做相关的数值模拟与分析。

3系统流程与多目标最优化问题(略)

3.1系统流程

充电站作为智能电网的重要组成部分,会在各个时段收集进入充电站充电的电动汽车的数量、电池剩余容量及其充电需求等信息。然后,将这些信息上传云端,通过计算机调度中心进行统一的优化处理,得出各个充电桩在不同时段应该给予家用电动汽车充电速率的最优值。最后,计算机调度中心将结果反馈给充电站,充电站按照优化信息安排家用电动汽车进行充电。图3为智能电网模式中充电站的营运流程图。

图3智能电网中的充电站营运流程图

提出多目标最优化方法 进而产生柏雷多最优电动汽车充电策略

3.2多目标优化问题

本文中的多目标问题包含最大化一天中充电站的充电服务收益与最大化充电站自身的负载因子。这两个目标将造成权衡问题。当充电站想要获得更高的充电收益时,充电站对各个时段充电速率的规划可能造成充电站一天负载因子的减少;相反地,当想提升充电站一天负载因子时,会造成充电站充电收益的下降。因此,要如何在这个权衡问题的框架下,通过改变各个时段充电站对于家用电动汽车的充电速率来寻找最优解为本次研究的重点。

3.3多目标免疫算法

在本文中的多目标最优化问题中,两个目标函数互相冲突,因此无法找到一个解能够同时最优化两个目标。关于多目标最优化问题的解,称之为柏雷多最优解(Pareto optimalsolution),其特性为:在提升任一目标函数的表现时,必定降低另一个目标函数的表现[17][18]。

在解多目标最优化问题时,多目标免疫算法[19]在解相关问题上拥有突出的收敛性与多样化的优点,使得多目标免疫算法逐渐成为受欢迎的多目标进化算法之一。多目标免疫算法模仿人类的免疫系统并模拟产生抗体(Antibodies)的机制。人类的免疫系统在侦测到病毒后,产生相对应的抗体。

除此之外,免疫系统还具有记忆的能力,当遇到相同的攻击时,可自动产生相对应的抗体抵御攻击。此特性可用来加快算法的收敛速度。

在多目标最优化的问题中,目标函数可视为抗原(Antigens),而免疫系统所产生的抗体可视为多目标问题的解。抗体与抗原的适合度(Fitness)则可对应到解和目标函数的适合度。所得到的解将存在同一个记忆细胞集合中,透过不断的更新和叠代,可以得到均匀分布的柏雷多最优解。

4模拟结果与讨论

本文模拟一个充电站在一天的充电情形,通过模拟得到图4,包含30个柏雷多最优解。由于家用电动汽车进入充电站时电池剩余电量是利用随机变量产生,因此每次模拟的结果会略有不同。

图4利用多目标免疫算法得到的柏雷多最优解

提出多目标最优化方法 进而产生柏雷多最优电动汽车充电策略

在得到柏雷多集合后,为了找出较优的负载因子与充电站可接受的充电收益,我们必须解决此多准则决策(Multiplecriteria decision making)问题。多准则决策为帮助决策者在数量有限的方案中,对不同的准则进行分析与筛选,最后选择出符合决策者期望的方案。

在多准则决策的方法中,我们使用曼哈顿最短距离(Minimum Manhattandistance, MMD)方法来进行决策[20]。曼哈顿最短距离法为选择在柏雷多前沿中与理想矢量具有最短曼哈顿距离的解作为最后的输出结果。

图5(a)表示充电站用10kw/h的固定充电速率给家用电动汽车充电,得到一天各时段的负载量。通过表1的计价方式得到充电站一天的总收益为1208美元。图5(b)表示充电站使用多目标最优化方法优化充电速率后,得到一天各时段的负载量。通过表1的计价方式得到充电站一天的总收益为1249美元。

图5 充电站一天各时段负载量 (a)固定充电速率;(b)优化充电速率

提出多目标最优化方法 进而产生柏雷多最优电动汽车充电策略

提出多目标最优化方法 进而产生柏雷多最优电动汽车充电策略

比较充电站在优化前与优化后各时段的负载量得到图6。发现优化充电站的充电速率后,高峰用电量有明显的减少,离峰时段用电量有所增加,各时段用电量较平均。负载因子从0.413提升到0.476,提升了15.3%。

而充电站一天的总收益也从优化前的1208美元,提高到1249美元,收益提升了3.4%。此结果显示本研究提出的多目标最优化方法,能有效地控制智能电网中电动汽车充电速率,进而提升充电站的负载因子与收益。

图6充电站在优化前与优化后各时段负载量

提出多目标最优化方法 进而产生柏雷多最优电动汽车充电策略

5结论

在智能电网的环境下,作为底层电力系统的充电站如果仅考虑如何增加自己供电给用户时的收入,有可能让负载因子处于较低的状态。

为了增加电网的稳定度,本文将充电站的服务收入与负载因子作为多目标最优化的目标函数,然后通过多目标免疫算法得到最优解。模拟结果显示充电站在使用这种优化算法后,能同时提升充电站一天的服务收入与负载因子。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 电动汽车
    +关注

    关注

    155

    文章

    11899

    浏览量

    229824
  • 充电
    +关注

    关注

    22

    文章

    1297

    浏览量

    94422

原文标题:利用多目标最优化方法控制智能电网中电动汽车充电速率

文章出处:【微信号:DGgrid,微信公众号:分布式发电与微电网】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    会“飞”的电动汽车,性能价格最优化

    韩国产“迷你”高速电动汽车(Mini Eletronic Vehicle)以迷你电动汽车为概念,可实现性能及价格的最优化,是一款国民性电动汽车
    发表于 01-25 09:29 2085次阅读

    电动汽车主动配电网多目标优化的调度方案,学到就是赚到

    中国科学院电工研究所的研究人员肖浩、裴玮、孔力,在2017年《电工技术学报》增刊2上撰文,针对大规模电动汽车接入配电网无序充电带来的负荷峰值增加等问题,提出一种含大规模电动汽车接入的主
    的头像 发表于 11-25 07:47 6927次阅读
    <b class='flag-5'>电动汽车</b>主动配电网<b class='flag-5'>多目标</b><b class='flag-5'>优化</b>的调度方案,学到就是赚到

    涨知识,电动汽车充电桩设计技术、难点、优化方案

    本资料主要介绍了电动汽车充电优化控制策略电动汽车的充放电设备、监控系统设备和谐波治理设备,以及它们各自的技术要求与实现,
    发表于 06-16 15:56

    基于matlab粒子群算法优化充电站布局

    电动汽车未来大规模发展需要众多公共充电站服务,公共充电站应根据电动汽车分布进行合理布局。给出电动汽车分布的预测
    发表于 09-14 09:06

    电动汽车无线充电优化匹配研究

    2021年华数杯赛题分析A题 电动汽车无线充电优化匹配研究赛题题目分析/选题建议B题 进出口公司的货物装运策略赛题题目分析/选题建议C题 电动汽车
    发表于 09-14 07:21

    电动汽车无线充电优化匹配研究

    A 题 电动汽车无线充电优化匹配研究电动汽车以环境污染小、噪音低、能源利用效率高、维修方便等优势深受消费者青睐。但现有电动汽车的有线
    发表于 09-14 07:14

    考虑电动汽车空间分配的多目标配电网重构优化

    考虑电动汽车空间分配的多目标配电网重构优化_唐可
    发表于 12-28 14:24 0次下载

    基于线性权重最优支配的高维多目标优化算法

    在高维多目标优化问题中,Pareto支配关系存在非支配解随优化目标数增加呈指数级增长和种群选择压力下降等问题。针对这些问题,基于线性权重聚合函数和支配关系两种比较
    发表于 11-24 16:56 0次下载

    基于二次聚类的大规模电动汽车有序充电调度策略优化

    针对大量电动汽车无序充电造成的充电站利用率不均衡问题,提出一种大规模电动汽车有序充电调度
    发表于 11-27 14:29 0次下载

    基于约束修补的多目标优化算法

    (NSGAII),进而提出一种修补策略的约束多目标优化算法( CMEA/R);接着借助模糊决策理论给出了多目标问题的
    发表于 01-05 14:31 0次下载

    电动汽车双层充电优化策略

    建立了基于节点阻塞电价的电动汽车充电双层优化模型。在上层模型中,建立含电动汽车负荷的直流最优潮流模型,
    发表于 01-16 15:11 6次下载

    基于模糊多目标优化电动汽车充电网络规划

    电动汽车充电网络规划对电动汽车发展具有重要意义,直接影响了车辆使用的便利性与配电网络运行的经济性。为此,建立了同时考虑充电网络服务能力最大化与配电系统网络损耗最小化的
    发表于 02-26 09:57 1次下载

    电动汽车充电优化控制策略

    针对可再生能源、电动汽车充电和电网峰谷负荷不协同问题,研究了直流微电网环境下光伏、储能和电动汽车充电的协同优化控制
    发表于 03-01 11:04 1次下载
    <b class='flag-5'>电动汽车</b><b class='flag-5'>充电</b><b class='flag-5'>优化</b>控制<b class='flag-5'>策略</b>

    电动汽车有序充电优化策略

    引言 为了应对气候变化,我国提出“碳达峰、碳 中和”目标,其中电能替代是达到目标的途径之 一,电动汽车的规模化应用有助于双碳目标的实现。然而
    的头像 发表于 08-24 12:25 2531次阅读
    <b class='flag-5'>电动汽车</b>有序<b class='flag-5'>充电</b><b class='flag-5'>优化</b><b class='flag-5'>策略</b>

    浅谈分时电价下含电动汽车的微电网群双层多目标优化调度

    充电满意度多目标下的电动汽车充电模式,建立了微电网内运营商峰谷差—用户充电费用少和充电满意度的双
    的头像 发表于 09-23 14:46 295次阅读
    浅谈分时电价下含<b class='flag-5'>电动汽车</b>的微电网群双层<b class='flag-5'>多目标</b><b class='flag-5'>优化</b>调度