福州大学电气工程与自动化学院、***元智大学电机工程学系的研究人员关昊亮、王进华、邱伟育,在2017年第12期《电气技术》杂志上撰文,本论文考虑智能电网中家用电动汽车和电动出租车的充电调度问题。充电站可以控制充电速率以最大化其收入;对于底层电力系统,期望最大化其自身的负载因子,从而确保系统的稳定性。
充电站最大化其收入与电力系统最大化其负载因子形成一个多目标优化问题。本文提出多目标最优化方法来解决此多目标优化问题,进而产生柏雷多(Pareto)最优电动汽车充电策略。文末进行数值分析来验证所提出方法的有效性。
近几年来,随着全球能源危机的不断加深、石油资源的日趋枯竭、空气污染、全球气温上升等危害的加剧,各国政府及汽车企业普遍意识到节约能源和减少有害气体的排放是未来汽车技术发展的必然方向[1]。发展电动汽车是解决上述问题的一条途径[2],然而大量的电动汽车接入电网会增加电网整体的负担。
估计到2050年,中国电动汽车的数量将达到2亿,总充电量将达到3.3亿千瓦[3],电动汽车的急剧增加对中国电力供应将造成重要影响。对于不同的电价收取模式,电动汽车会有不同的充电需求、会在不同时段从电网获取电能补给。电网与电动汽车交易模式将渐趋复杂,需要更加先进的电力市场来支撑此变化[4]。
随着电动汽车的大规模增长,对于充电站的充电排程与充电速率的研究就显得尤为重要。充电站作为电网系统的运营商,会最先接触到电动汽车用户,可以通过优化充电站各个充电桩的充电速率,来调节各个时段的电网负载,维护电网稳定[5]。
本文分成几个部分探讨相关议题:首先讨论充电站及其服务对象的数学模型,然后介绍智能电网模式下的电价策略,最后探讨相对应的多目标优化问题并提出解决方法。为了展示方便,本文以30分钟为一个时段(time slot),将一天分为48个时段。
1充电站及其服务对象的讨论(略)
1.1充电站规模
充电站在未来社会中的重要性与现在的加油站类似,为了调节充电站各时段的用电负载量,充电站可以调控家用电动汽车的充电速率,充电速率的范围为5kw/h到15kw/h。本文所用模拟的充电站规模为每个充电站有20个充电桩,最大可同时负担20辆电动汽车进行充电。在充电站进行充电的电动汽车包括插电式电动出租车(Plug-inElectric Taxi, PET)与家用电动汽车。
1.2插电式电动出租车
1.3家用电动汽车
2智能电网的电价策略
电网公司会通过改变电价的高低来引导用电者转移高峰用电量,常见的电价模型有:即时电价(Real-timepricing)、前一天公布的电价(Day-ahead pricing)、分时电价(Time-of-usepricing)、尖峰时间反馈电价(Peak-time rebate pricing)等[10-13]。
本文使用美国宾夕法尼亚州新泽西马里兰互联电力公司(PJM)在2017年5月25日公布的价格(前一日公布的电价),其电价系统在高峰时段和离峰时段的单价并不相同[14]。本文将一小时的电价等值分成2个时段,一日共48个时段做讨论,并利用后面介绍的多目标最优化方法,做相关的数值模拟与分析。
3系统流程与多目标最优化问题(略)
3.1系统流程
充电站作为智能电网的重要组成部分,会在各个时段收集进入充电站充电的电动汽车的数量、电池剩余容量及其充电需求等信息。然后,将这些信息上传云端,通过计算机调度中心进行统一的优化处理,得出各个充电桩在不同时段应该给予家用电动汽车充电速率的最优值。最后,计算机调度中心将结果反馈给充电站,充电站按照优化信息安排家用电动汽车进行充电。图3为智能电网模式中充电站的营运流程图。
图3智能电网中的充电站营运流程图
3.2多目标优化问题
本文中的多目标问题包含最大化一天中充电站的充电服务收益与最大化充电站自身的负载因子。这两个目标将造成权衡问题。当充电站想要获得更高的充电收益时,充电站对各个时段充电速率的规划可能造成充电站一天负载因子的减少;相反地,当想提升充电站一天负载因子时,会造成充电站充电收益的下降。因此,要如何在这个权衡问题的框架下,通过改变各个时段充电站对于家用电动汽车的充电速率来寻找最优解为本次研究的重点。
3.3多目标免疫算法
在本文中的多目标最优化问题中,两个目标函数互相冲突,因此无法找到一个解能够同时最优化两个目标。关于多目标最优化问题的解,称之为柏雷多最优解(Pareto optimalsolution),其特性为:在提升任一目标函数的表现时,必定降低另一个目标函数的表现[17][18]。
在解多目标最优化问题时,多目标免疫算法[19]在解相关问题上拥有突出的收敛性与多样化的优点,使得多目标免疫算法逐渐成为受欢迎的多目标进化算法之一。多目标免疫算法模仿人类的免疫系统并模拟产生抗体(Antibodies)的机制。人类的免疫系统在侦测到病毒后,产生相对应的抗体。
除此之外,免疫系统还具有记忆的能力,当遇到相同的攻击时,可自动产生相对应的抗体抵御攻击。此特性可用来加快算法的收敛速度。
在多目标最优化的问题中,目标函数可视为抗原(Antigens),而免疫系统所产生的抗体可视为多目标问题的解。抗体与抗原的适合度(Fitness)则可对应到解和目标函数的适合度。所得到的解将存在同一个记忆细胞集合中,透过不断的更新和叠代,可以得到均匀分布的柏雷多最优解。
4模拟结果与讨论
本文模拟一个充电站在一天的充电情形,通过模拟得到图4,包含30个柏雷多最优解。由于家用电动汽车进入充电站时电池剩余电量是利用随机变量产生,因此每次模拟的结果会略有不同。
图4利用多目标免疫算法得到的柏雷多最优解
在得到柏雷多集合后,为了找出较优的负载因子与充电站可接受的充电收益,我们必须解决此多准则决策(Multiplecriteria decision making)问题。多准则决策为帮助决策者在数量有限的方案中,对不同的准则进行分析与筛选,最后选择出符合决策者期望的方案。
在多准则决策的方法中,我们使用曼哈顿最短距离(Minimum Manhattandistance, MMD)方法来进行决策[20]。曼哈顿最短距离法为选择在柏雷多前沿中与理想矢量具有最短曼哈顿距离的解作为最后的输出结果。
图5(a)表示充电站用10kw/h的固定充电速率给家用电动汽车充电,得到一天各时段的负载量。通过表1的计价方式得到充电站一天的总收益为1208美元。图5(b)表示充电站使用多目标最优化方法优化充电速率后,得到一天各时段的负载量。通过表1的计价方式得到充电站一天的总收益为1249美元。
图5 充电站一天各时段负载量 (a)固定充电速率;(b)优化充电速率
比较充电站在优化前与优化后各时段的负载量得到图6。发现优化充电站的充电速率后,高峰用电量有明显的减少,离峰时段用电量有所增加,各时段用电量较平均。负载因子从0.413提升到0.476,提升了15.3%。
而充电站一天的总收益也从优化前的1208美元,提高到1249美元,收益提升了3.4%。此结果显示本研究提出的多目标最优化方法,能有效地控制智能电网中电动汽车充电速率,进而提升充电站的负载因子与收益。
图6充电站在优化前与优化后各时段负载量
5结论
在智能电网的环境下,作为底层电力系统的充电站如果仅考虑如何增加自己供电给用户时的收入,有可能让负载因子处于较低的状态。
为了增加电网的稳定度,本文将充电站的服务收入与负载因子作为多目标最优化的目标函数,然后通过多目标免疫算法得到最优解。模拟结果显示充电站在使用这种优化算法后,能同时提升充电站一天的服务收入与负载因子。
-
电动汽车
+关注
关注
155文章
11937浏览量
230391 -
充电
+关注
关注
22文章
1303浏览量
94458
原文标题:利用多目标最优化方法控制智能电网中电动汽车充电速率
文章出处:【微信号:DGgrid,微信公众号:分布式发电与微电网】欢迎添加关注!文章转载请注明出处。
发布评论请先 登录
相关推荐
评论