0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

机器学习与深度学习的区别和使用情况以及用例的对比

8gVR_D1Net08 2018-01-18 16:23 次阅读

如今,人工智能的应用越来越广泛。机器学习深度学习这两个术语也随之出现,而机器学习与深度学习并不是非此即彼的排斥关系。深度学习是机器学习的一个子集,而这两者都是人工智能(AI)的子集。

如今,人工智能的应用越来越广泛。机器学习和深度学习这两个术语也随之出现,而机器学习与深度学习并不是非此即彼的排斥关系。深度学习是机器学习的一个子集,而这两者都是人工智能(AI)的子集。但是,在机器学习和深度学习的定义和用例方面,市场上还存在很多混淆之处,所以在此进行一下澄清:

•人工智能(AI)是在计算机系统和机器中模拟和模仿人类智能行为的研究。

•机器学习是人工智能的一个子领域,它使用算法将人工智能的概念应用到计算系统中。通过计算机识别,并根据数据模式采取行动。随着时间的推移,机器学习没有明确的编程来提高其准确性。机器学习落后于预测编码、聚类和视觉热图等分析。

•深度学习是机器学习的一个子领域,是人工神经网络的另一个名称。深度学习计算机网络模拟人类大脑感知、组织和从数据输入作出决定的方式。

机器学习与深度学习

事实上,人们对机器学习与深度学习的想法忽略了“深度学习是机器学习的一个子集”这一点。人们更有可能在其应用程序中使用机器学习,而不是深度学习。深度学习仍然是一个发展中的技术,而且如果进行部署,其代价昂贵。但是目前有一些产品已经上市,随着时间的推移,深度学习将变得越来越普遍。

以下来看两者之间的区别和使用情况:

机器学习

作为人工智能的一个子集,机器学习使用算法来解析数据,从结果中学习,并运用机器学习来做出决定或预测。其示例包括聚类、贝叶斯网络和可视化数据映射。例如,在电子发现和合规性调查中,热图和视觉集群可将图形搜索结果呈现给工作人员,他们可以使用结果深入研究其他模糊的数据。

机器学习技术分为两类:监督机器学习和无监督机器学习。监督式学习取决于人为生成的种子集,教导软件如何定义数据。预测编码就是一个很好的例子,该软件指的是将数据模式与相关百分比匹配的种子集。随着时间的推移,预测编码工具将从正在进行的审阅者反馈中学习。

无监督机器学习依赖于识别数据中包含的模式,并将其与其他数据或搜索查询进行比较。机器学习算法随着数据集的增长和更多模式的出现而随时间学习。无监督机器学习包括集群、概念搜索和近似重复数据删除。

例如,聚类匹配文档之间相似的文本和元数据,并将数据呈现在可视化集群中。概念搜索通过识别和匹配概念来扩展基于文本的查询。通过近似重复数据删除那些比较类似的数据,并根据相似度排除文档,而在电子邮件线程中,将孤立的电子邮件链接到相应的线程。这些分析中的每一个都从其行动中学习,以提高性能和准确性。

机器学习基础设施差异很大,单一系统可以实现有限的集群或网络流量报告,而大型系统则包含数十台服务器和大规模并行处理(MPP)架构,以便跨多个数据源处理海量数据。

深度学习

深度学习(也称为人工神经网络)基于所有机器学习算法。但是,它并没有使用数据分类等任务特定的算法。相反,它通过识别来自非结构化输入的代表性数据,并输出准确的行动和决定来模拟人类的大脑结构和功能。

深度学习可以被监督或不受监督,这意味着大型神经网络可以接受标记的输入,但不需要它。学习程序教会神经网络如何构建不同的处理层,但是当网络处理输入时,它们根据数据输入和输出创建自己的层。这种深度学习的水平允许神经网络自动从原始数据中提取特征,而无需额外的人工输入。

神经网络由多个简单连接的处理器(称为神经元)组成,这些神经元是为模仿人脑中的神经元而创建的数学函数。这些人造神经元组成了神经网络的单元。简单地说,每个神经元接收两个或更多的输入,处理它们,并输出一个结果。一些神经元接收来自外部传感器的输入,而另一些神经元则被来自其他活动神经元的输入激活。神经元可能激活额外的神经元,或者可能通过触发动作影响外部环境。所有的活动都是在自创的隐藏层中进行的,每一个连续的层再输入前一层的输出。

实际上,神经网络摄取非结构化数据:声音、文本、视频和图像。网络将数据分成数据块,并发送给单独的神经元和层进行处理。一旦这个离散的处理完成,网络产生最后的输出层。

大规模的可扩展性是神经网络的关键。神经网络的性能取决于它可以摄取、训练和处理多少数据。数据越多意味着效果越好。这是另一个区别于机器学习的地方,其算法通常在一定水平上保持平稳。深度学习只是通过其计算资源来限制其性能。因此,神经网络的“深层”部分:计算资源越多,层次越深,输出越广泛。尽管深度学习不是那么快捷和容易,但较低的计算处理能力却使研究和发展发生了革命性的变化。

机器学习和深度学习的常用用例

重要的是要记住机器学习的用例已经出现在市场。深度学习的用例主要是现阶段的发展目标,其商业化程度有限。有一些用例是相似的:区别在于神经网络可以增长到接近无限的学习和输出规模。机器学习更受约束,适合具体的实际计算任务。另外请记住,深度学习和机器学习不是相互排斥的。

机器学习和深度学习用例的对比

·营销:

机器学习:合规性电子邮件和社交媒体的情感分析使用文本提示来提醒情绪状态。

深度学习:通过情绪分析从照片和视频中识别实时情绪。其应用程序包括基于人类观察者的情绪反应提供动态内容或视觉显示。

·无人驾驶汽车

机器学习:基于传感器信息的无人驾驶汽车

深度学习:基于视觉模式识别的无人驾驶汽车,例如可以立即识别消防栓和行人之间的差异。深度学习还可以通过检测引擎声音的波形来实现汽车缺陷检测。

·监视分析

机器学习:监视分析系统是基于规则的,通过用户生成的定义和规则分析馈送。

深度学习:这些系统基于行为分析。它观察详细的视觉线索,并教导自己哪些行为是观察对象的正常行为。联网的深度学习系统也可以识别来自时间和地点不同的照片和视频的相同面孔。

·生命科学

机器学习:采用医疗用户程序算法来识别糖尿病人群中的变量。

深度学习:预测个体患者的风险因素。通过识别视觉标记物识别MRI扫描中的癌症标记物。

·语音识别

机器学习:机器学习可以使语音识别随着时间的推移向用户学习。这个过程是一种密集训练,可以达到平均95%的准确性。

深度学习:神经网络处理数十亿个口述音频片段,将语音识别的准确性提高到接近100%,同时缩短训练时间。语音识别还通过关键词和主题对原始音频进行分类,并识别发言者,这对音频监控技术发展具有广泛的影响。

·娱乐节目

机器学习:大型CGI游戏可以使用机器学习来帮助自动实现密集的视觉效果,如插入数字或可视的巨大的空间爆炸。

深度学习:深度学习使得媒体和游戏能够响应用户输入、动作和/或表情而动态地绘制动画。

展望机器学习和深度学习的未来

人们在日常生活中并不会找到深度学习/人工神经网络的例子。他们普遍需要大量的标记数据进行监督学习,或大量的非结构化数据进行无监督学习。深度学习技术开发人员需要花费大量的时间标记,并向神经网络输入数据,或者需要输入数以百万计的非结构化对象来实现无监督学习。

在当今数据密集型的世界里,拥有足够的数据并不是问题。标记足够的数据,或者向神经网络引入足够的未标记数据是企业面临的一个挑战。尽管企业的处理能力不断增加,硬件价格也有所下降,但密集计算仍然需要企业对系统和支持进行大量的投资。

尽管如此,深度学习在许多不同的业务垂直领域都有很好的用例。像谷歌和Facebook这样的行业巨头正在投资深度学习的研究。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 人工智能
    +关注

    关注

    1791

    文章

    47183

    浏览量

    238213
  • 机器学习
    +关注

    关注

    66

    文章

    8406

    浏览量

    132557
  • 深度学习
    +关注

    关注

    73

    文章

    5500

    浏览量

    121109

原文标题:机器学习与深度学习:应用与商业

文章出处:【微信号:D1Net08,微信公众号:AI人工智能D1net】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    机器学习深度学习区别在哪?看完就知道了

    如果你经常想让自己弄清楚机器学习深度学习区别,阅读该文章,我将用通俗易懂的语言为你介绍他们之间的差别。
    的头像 发表于 11-09 07:19 2.4w次阅读
    <b class='flag-5'>机器</b><b class='flag-5'>学习</b>和<b class='flag-5'>深度</b><b class='flag-5'>学习</b>的<b class='flag-5'>区别</b>在哪?看完就知道了

    一文详解机器学习深度学习区别

    深度学习这几年特别火,就像5年前的大数据一样,不过深度学习其主要还是属于机器学习的范畴领域内,所
    发表于 09-06 12:48 2472次阅读
    一文详解<b class='flag-5'>机器</b><b class='flag-5'>学习</b>和<b class='flag-5'>深度</b><b class='flag-5'>学习</b>的<b class='flag-5'>区别</b>

    如何区分深度学习机器学习

    深度学习与传统的机器学习最主要的区别在于随着数据规模的增加其性能也不断增长。当数据很少时,深度
    发表于 10-27 16:50 1959次阅读
    如何区分<b class='flag-5'>深度</b><b class='flag-5'>学习</b>与<b class='flag-5'>机器</b><b class='flag-5'>学习</b>

    主流GPS芯片使用情况

    主流GPS芯片使用情况
    发表于 11-27 14:34 13次下载

    深度学习的概念、发展状况以及机器学习区别和应用

    一般来说,深度学习适用于计算量更大的情况,而机器学习技术相对更易于使用。
    的头像 发表于 02-09 14:41 7857次阅读

    深度学习机器学习的六个本质区别你知道几个?

    深度学习机器学习已经变得无处不在,那它们之间到底有什么区别呢?本文我们为大家总结了深度
    的头像 发表于 11-30 11:17 1.5w次阅读

    从五个方面详谈机器学习深度学习区别

    继系列上一篇 所以,机器学习深度学习区别是什么?浅谈后,今天继续深入探讨两者的更多区别
    的头像 发表于 03-01 15:44 1.6w次阅读

    机器学习深度学习的关键区别

    “人工智能”、“机器学习”和“深度学习”这三个词经常交替出现,但如果你正在考虑从事人工智能的职业,了解它们之间的区别是很重要的。
    发表于 03-02 16:57 1720次阅读

    机器学习深度学习有什么区别

    深度学习算法现在是图像处理软件库的组成部分。在他们的帮助下,可以学习和训练复杂的功能;但他们的应用也不是万能的。 “机器学习”和“
    的头像 发表于 03-12 16:11 8190次阅读
    <b class='flag-5'>机器</b><b class='flag-5'>学习</b>和<b class='flag-5'>深度</b><b class='flag-5'>学习</b>有什么<b class='flag-5'>区别</b>?

    AI、机器学习深度学习区别及应用

    深度学习和神经网络的区别在于隐藏层的深度。一般来说,神经网络的隐藏层要比实现深度学习的系统浅得多
    发表于 07-28 10:44 555次阅读
    AI、<b class='flag-5'>机器</b><b class='flag-5'>学习</b>和<b class='flag-5'>深度</b><b class='flag-5'>学习</b>的<b class='flag-5'>区别</b>及应用

    机器学习与数据挖掘的对比区别

    机器学习与数据挖掘的对比区别  机器学习和数据挖掘是当前互联网行业中最热门的领域之一。虽然它们
    的头像 发表于 08-17 16:11 1542次阅读

    机器学习深度学习区别

    机器学习深度学习区别 随着人工智能技术的不断发展,机器
    的头像 发表于 08-17 16:11 4222次阅读

    深度学习机器学习的定义和优缺点 深度学习机器学习区别

      深度学习机器学习机器学习领域中两个重要的概念,都是人工智能领域非常热门的技术。两者的关系
    发表于 08-21 18:27 4415次阅读

    机器学习深度学习区别

      机器学习深度学习是当今最流行的人工智能(AI)技术之一。这两种技术都有助于在不需要人类干预的情况下让计算机自主
    发表于 08-28 17:31 1503次阅读

    深度学习与传统机器学习对比

    在人工智能的浪潮中,机器学习深度学习无疑是两大核心驱动力。它们各自以其独特的方式推动着技术的进步,为众多领域带来了革命性的变化。然而,尽管它们都属于
    的头像 发表于 07-01 11:40 1323次阅读