简单的来说,根文件系统包括虚拟根文件系统和真实根文件系统。在Kernel启动的初始阶段,首先去创建虚拟的根文件系统,接下来再去调用do_mount来加载真正的文件系统,并将根文件系统切换到真正的文件系统,也即真实的文件系统。
一.什么是根文件系统
在传统的Windows机器上目录结构中,可能会包括C:或者D:盘,而他们一般就称之为特定逻辑磁盘的根目录。从文件系统的层面来说,每一个分区都包含了一个根目录区,也即系统中存在多个根目录。
但是,在Linux系统中,目录结构与Windows上有较大的不同。系统中只有一个根目录,路径是“/”,而其它的分区只是挂载在根目录中的一个文件夹,如“/proc”和“system”等,这里的“/”就是Linux中的根目录。
对应根目录也就存在一个根目录文件系统的概念,我们可以将某一个分区挂载为根目录文件系统,如6410公版中就将mtdblk2挂载为根目录文件系统。程序中可以通过U-Boot给Kernel指定参数或者编译选项来指定,如目前的开发板中就通过如下的编译选项来制定根目录文件系统:
CONFIG_CMDLINE="console=ttyS0,115200 mem=108M rdinit=/linuxrc root=/dev/mtdblock2"
简单的来说,根目录文件系统就是一种目录结构,包括了Linux启动的时候所必须的一些目录结构和重要文件。
根文件系统有两种,一种是虚拟根文件系统,另外一种是真实的根文件系统。一般情况下,会首先在虚拟的根文件系统中做一部分工作,然后切换到真实的根文件系统下面。
笼统的来说,虚拟的根文件系统包括三种类型,即Initramfs、cpio-initrd和image-initrd。
二.相关重要概念
1. Initrd
Initrd是在Linux中普遍采用的一种技术,就是由Bootloader加载的内存盘。在系统启动的过程中,首先会执行Initrd中的“某一个文件”来完成驱动模块加载的任务,第二阶段才会执行真正的根文件系统中的/sbin/init。这里提到的第一阶段是为第二阶段服务的,主要是用来加载根文件系统以及根文件系统存储介质的驱动程序。
注:之所以称之为“某一个文件”,是因为这里文件的名字因为操作系统的版本不同而不同
资料中提到,存在多种类型的Initrd,实际应用中包括无Initrd、Linux Kernel和Initrd打包、Linux Kernel和Initrd分离以及RAMDisk Initrd。
目前,手中项目采用的就是第四种策略。在系统启动的时候,U-Boot会将Linux Kernel和Rootfs加载到内存,并跳转到Linux Kernel的入口地址执行程序。这篇文章将侧重对该种情况进行分析。
三.根文件系统加载代码分析
1. VFS的注册
首先不得不从老掉牙的Linux系统的函数start_kernel()说起。函数start_kernel()中会去调用vfs_caches_init()来初始化VFS。
下面看一下函数vfs_caches_init ()的代码:
void __init vfs_caches_init(unsigned long mempages)
{
unsigned long reserve;
/* Base hash sizes on available memory, with a reserve equal to
150% of current kernel size */
reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
mempages -= reserve;
names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
dcache_init();
inode_init();
files_init(mempages);
[1] mnt_init();
bdev_cache_init();
chrdev_init();
}
代码【1】:vfs_caches_init()中最重要的函数。函数mnt_init()会创建一个rootfs,这是个虚拟的rootfs,即内存文件系统,后面还会指向真实的文件系统。
接下来看一下函数mnt_init():
Void __init mnt_init(void)
{
unsigned u;
int err;
init_rwsem(&namespace_sem);
mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct vfsmount),
0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
if (!mount_hashtable)
panic("Failed to allocate mount hash table/n");
printk("Mount-cache hash table entries: %lu/n", HASH_SIZE);
for (u = 0; u < HASH_SIZE; u++)
INIT_LIST_HEAD(&mount_hashtable[u]);
err = sysfs_init();
if (err)
printk(KERN_WARNING "%s: sysfs_init error: %d/n",
__func__, err);
fs_kobj = kobject_create_and_add("fs", NULL);
if (!fs_kobj)
printk(KERN_WARNING "%s: kobj create error/n", __func__);
[1] init_rootfs();
[2] init_mount_tree();
}
代码[1]:创建虚拟根文件系统;
代码[2]:注册根文件系统。
接下来看一下函数init_mount_tree()的代码:
static void __init init_mount_tree(void)
{
struct vfsmount *mnt;
struct mnt_namespace *ns;
struct path root;
[1] mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
if (IS_ERR(mnt))
panic("Can't create rootfs");
ns = kmalloc(sizeof(*ns), GFP_KERNEL);
if (!ns)
panic("Can't allocate initial namespace");
atomic_set(&ns->count, 1);
INIT_LIST_HEAD(&ns->list);
init_waitqueue_head(&ns->poll);
ns->event = 0;
list_add(&mnt->mnt_list, &ns->list);
ns->root = mnt;
mnt->mnt_ns = ns;
init_task.nsproxy->mnt_ns = ns;
get_mnt_ns(ns);
root.mnt = ns->root;
root.dentry = ns->root->mnt_root;
set_fs_pwd(current->fs, &root);
[2] set_fs_root(current->fs, &root);
}
代码[1]:创建虚拟文件系统;
代码[2]:将当前的文件系统配置为根文件系统。
可能有人会问,为什么不直接把真实的文件系统配置为根文件系统?
答案很简单,内核中没有根文件系统的设备驱动,如USB等存放根文件系统的设备驱动,而且即便你将根文件系统的设备驱动编译到内核中,此时它们还尚未加载,其实所有的Driver是由在后面的Kernel_Init线程进行加载。所以需要CPIO Initrd、Initrd和RAMDisk Initrd。另外,我们的Root设备都是以设备文件的方式指定的,如果没有根文件系统,设备文件怎么可能存在呢?
2. VFS的挂载
接下来,Kernel_Start会去调用rest_init()并会去创建系统中的第一个进程Kernel_Init,并由其调用所有模块的初始化函数,其中ROOTFS的初始化函数也在这个期间被调用。
函数rest_init代码如下:
/*
* We need to finalize in a non-__init function or else race conditions
* between the root thread and the init thread may cause start_kernel to
* be reaped by free_initmem before the root thread has proceeded to
* cpu_idle.
*
* gcc-3.4 accidentally inlines this function, so use noinline.
*/
static noinline void __init_refok rest_init(void)
__releases(kernel_lock)
{
int pid;
kernel_thread(kernel_init, NULL, CLONE_FS | CLONE_SIGHAND);
numa_default_policy();
pid = kernel_thread(kthreadd, NULL, CLONE_FS | CLONE_FILES);
kthreadd_task = find_task_by_pid_ns(pid, &init_pid_ns);
unlock_kernel();
/*
* The boot idle thread must execute schedule()
* at least once to get things moving:
*/
init_idle_bootup_task(current);
rcu_scheduler_starting();
preempt_enable_no_resched();
schedule();
preempt_disable();
/* Call into cpu_idle with preempt disabled */
cpu_idle();
}
函数Kernel_Init代码如下:
static int __init kernel_init(void * unused)
{
lock_kernel();
/*
* init can run on any cpu.
*/
set_cpus_allowed_ptr(current, CPU_MASK_ALL_PTR);
/*
* Tell the world that we're going to be the grim
* reaper of innocent orphaned children.
*
* We don't want people to have to make incorrect
* assumptions about where in the task array this
* can be found.
*/
init_pid_ns.child_reaper = current;
cad_pid = task_pid(current);
smp_prepare_cpus(setup_max_cpus);
do_pre_smp_initcalls();
start_boot_trace();
smp_init();
sched_init_smp();
cpuset_init_smp();
[1] do_basic_setup();
/*
* check if there is an early userspace init. If yes, let it do all
* the work
*/
[2] if (!ramdisk_execute_command)
ramdisk_execute_command = "/init";
[3] if (sys_access((const char __user *) ramdisk_execute_command, 0) != 0) {
ramdisk_execute_command = NULL;
prepare_namespace();
}
/*
* Ok, we have completed the initial bootup, and
* we're essentially up and running. Get rid of the
* initmem segments and start the user-mode stuff..
*/
init_post();
return 0;
}
代码[1]:函数do_basic_setup()调用所有模块的初始化函数,包括initramfs的初始化函数populate_rootfs。这部分代码在init/initramfs.c下面,函数populate_rootfs通过如下方式导出:
rootfs_initcall(populate_rootfs);
代码[2]:ramdisk_execute_command值通过“rdinit=”指定,如果未指定,则采用默认的值/init。
代码[3]:检查根文件系统中是否存在文件ramdisk_execute_command,如果存在的话则执行init_post(),否则执行prepare_namespace()挂载根文件系统。
需要特别指出的是initramfs.c模块的入口函数populate_rootfs()是否执行取决于Kernel的编译选项。参照linux/init目录下的makefile文件,如下:
#
# Makefile for the linux kernel.
#
obj-y := main.o version.o mounts.o
ifneq ($(CONFIG_BLK_DEV_INITRD),y)
obj-y += noinitramfs.o
else
obj-$(CONFIG_BLK_DEV_INITRD) += initramfs.o
endif
obj-$(CONFIG_GENERIC_CALIBRATE_DELAY) += calibrate.o
mounts-y := do_mounts.o
mounts-$(CONFIG_BLK_DEV_RAM) += do_mounts_rd.o
mounts-$(CONFIG_BLK_DEV_INITRD) += do_mounts_initrd.o
mounts-$(CONFIG_BLK_DEV_MD) += do_mounts_md.o
主要完成Initrd的检测工作,检查出是CPIO Initrd还是Initramfs还是Image-Initrd还是需要在编译的时候做如下的配置(General setupàInitramfs/initrd support):
该函数的代码如下:
static int __init populate_rootfs(void)
{
[1] char *err = unpack_to_rootfs(__initramfs_start,
__initramfs_end - __initramfs_start, 0);
if (err)
panic(err);
[2] if (initrd_start) {
#ifdef CONFIG_BLK_DEV_RAM
int fd;
printk(KERN_INFO "checking if image is initramfs...");
[3] err = unpack_to_rootfs((char *)initrd_start,
initrd_end - initrd_start, 1);
if (!err) {
printk(" it is/n");
unpack_to_rootfs((char *)initrd_start,
initrd_end - initrd_start, 0);
free_initrd();
return 0;
}
printk("it isn't (%s); looks like an initrd/n", err);
[4] fd = sys_open("/initrd.image", O_WRONLY|O_CREAT, 0700);
if (fd >= 0) {
[5] sys_write(fd, (char *)initrd_start,
initrd_end - initrd_start);
sys_close(fd);
[6] free_initrd();
}
#else
printk(KERN_INFO "Unpacking initramfs...");
[7] err = unpack_to_rootfs((char *)initrd_start,
initrd_end - initrd_start, 0);
if (err)
panic(err);
printk(" done/n");
free_initrd();
#endif
}
return 0;
}
代码[1]:unpack_to_rootfs顾名思义,就是解压包到rootfs,其具有两个功能,一个是检测是否是属于cpio包,另外一个就是解压cpio包,通过最后一个参数进行控制。1:检测,0:解压。其实,Initramfs也是压缩过后的CPIO文件。
资料中提到,Linux2.5中开始引入initramfs,在Linux2.6中一定存在,而且编译的时候通过连接脚本arch/arm/kernel/vmlinux.lds将其编译到__initramfs_start~__initramfs_end,执行完unpack_to_rootfs后将被拷贝到根目录。
代码[2]:判断是否加载了Initrd,无论对于那种格式的Initrd,即无论是CPIO-Initrd还是Image-Initrd,U-Boot都会将其拷贝到initrd_start。当然了,如果是initramfs的情况下,该值肯定为空了。
代码[3]:判断加载的是不是CPIO-Initrd。
通过在这里主要用于检测,如果是编译到Linux Kernel的CPIO Initrd,__initramfs_end - __initramfs_start应该是大于零的,否则为零,其实也就是通过这里来判断是否为CPIO Initrd。
代码[4]:如果不是CPIO-Initrd,则就是Image-Initrd,将其内容保存到文件/initrd.image中。在根文件系统中创建文件/initrd.image。
代码[5]:这里是对Image-Initrd提供支持的,将内存中的initrd赋值到initrd.image中,以释放内存空间。
代码[6]:释放Initrd所占用的内存空间。
另外,如果要支持Image-Initrd的话,必须要配置CONFIG_BLK_DEV_RAM,配置的方法上面已经讲过。
下面接着来分析函数kernel_init
static int __init kernel_init(void * unused)
{
…
do_basic_setup();
/*
* check if there is an early userspace init. If yes, let it do all
* the work
*/
if (!ramdisk_execute_command)
ramdisk_execute_command = "/init";
[1] if (sys_access((const char __user *) ramdisk_execute_command, 0) != 0) {
ramdisk_execute_command = NULL;
prepare_namespace();
}
/*
* Ok, we have completed the initial bootup, and
* we're essentially up and running. Get rid of the
* initmem segments and start the user-mode stuff..
*/
init_post();
return 0;
}
代码[1]:前面在对函数populate_rootfs进行分析的时候已经知道,对于initramfs和cpio-initrd的情况,都会将文件系统(其实是一个VFS)解压到根文件系统。如果虚拟文件系统中存在ramdisk_execute_command指定的文件则直接转向init_post()来执行,否则执行函数prepare_namespace()。
3. 根文件系统的挂载
从上面的代码分析中知道,对于Image-Initrd或者VFS(即InitRamfs或者CPIO-Initrd)中不存在文件ramdisk_execute_command的情况,则执行prepare_namespace()。
接下来看一下函数prepare_namespace()的代码:
/*
* Prepare the namespace - decide what/where to mount, load ramdisks, etc.
*/
void __init prepare_namespace(void)
{
int is_floppy;
[1] if (root_delay) {
printk(KERN_INFO "Waiting %dsec before mounting root device.../n",
root_delay);
ssleep(root_delay);
}
/*
* wait for the known devices to complete their probing
*
* Note: this is a potential source of long boot delays.
* For example, it is not atypical to wait 5 seconds here
* for the touchpad of a laptop to initialize.
*/
[2] wait_for_device_probe();
md_run_setup();
[3] if (saved_root_name[0]) {
root_device_name = saved_root_name;
if (!strncmp(root_device_name, "mtd", 3) ||
!strncmp(root_device_name, "ubi", 3)) {
[4] mount_block_root(root_device_name, root_mountflags);
goto out;
}
[5] ROOT_DEV = name_to_dev_t(root_device_name);
if (strncmp(root_device_name, "/dev/", 5) == 0)
root_device_name += 5;
}
[6] if (initrd_load())
goto out;
[7] /* wait for any asynchronous scanning to complete */
if ((ROOT_DEV == 0) && root_wait) {
printk(KERN_INFO "Waiting for root device %s.../n",
saved_root_name);
while (driver_probe_done() != 0 ||
(ROOT_DEV = name_to_dev_t(saved_root_name)) == 0)
msleep(100);
async_synchronize_full();
}
is_floppy = MAJOR(ROOT_DEV) == FLOPPY_MAJOR;
if (is_floppy && rd_doload && rd_load_disk(0))
ROOT_DEV = Root_RAM0;
mount_root();
out:
[9] sys_mount(".", "/", NULL, MS_MOVE, NULL);
[10] sys_chroot(".");
}
代码[1]:资料中提到,对于将根文件系统存放到USB或者SCSI设备上的情况,Kernel需要等待这些耗费时间比较久的设备驱动加载完毕,所以这里存在一个Delay。
代码[2]:从字面的意思来看,这里也是来等待根文件系统所在的设备探测函数的完成。
代码[3]:参数saved_root_name存放的是Kernel参数root=所指定的设备文件,这点不再赘述,可以参照代码。
代码[4]:按照资料中的解释,这里相当于将saved_root_nam指定的设备进行加载。如下面传递给内核的command line:
CONFIG_CMDLINE="console=ttyS0,115200 mem=108M rdinit=/linuxrc root=/dev/mtdblock2"
实际上就是加载/dev/mtdblock2。
代码[5]:参数ROOT_DEV存放设备节点号。
代码[6]:挂载initrd,这里进行的操作相当的复杂,可以参照后续关于该函数的详细解释。
代码[7]:如果指定mount_initrd为true,即没有指定在函数initrd_load中mount的话,则在这里重新realfs的mount操作。
代码[9]:将挂载点从当前目录(实际当前的目录在mount_root中或者在mount_block_root中指定)移到根目录。对于上面的command line的话,当前的目录就是/dev/mtdblock2。
代码[10]:将当前目录当作系统的根目录,至此虚拟系统根目录文件系统切换到了实际的根目录文件系统。
接下来看一下函数initrd_load()的代码:
int __init initrd_load(void)
{
[1] if (mount_initrd) {
[2] create_dev("/dev/ram", Root_RAM0);
/*
* Load the initrd data into /dev/ram0. Execute it as initrd
* unless /dev/ram0 is supposed to be our actual root device,
* in that case the ram disk is just set up here, and gets
* mounted in the normal path.
*/
[3] if (rd_load_image("/initrd.image") && ROOT_DEV != Root_RAM0) {
sys_unlink("/initrd.image");
[4] handle_initrd();
return 1;
}
}
sys_unlink("/initrd.image");
return 0;
}
代码[1]:可以通过Kernel的参数“noinitrd“来配置mount_initrd的值,默认为1,很少看到有项目区配置该值,所以一般情况下,mount_initrd的值应该为1;
代码[2]:创建一个Root_RAM0的设备节点/dev/ram;
代码[3]:如果根文件设备号不是Root_RAM0则程序就会执行代码[4],换句话说,就是给内核指定的参数不是/dev/ram,例如上面指定的/dev/mtdblock2设备节点肯定就不是Root_RAM0。
另外这行代码还将文件initrd.image释放到节点/dev/ram0,也就是对应image-initrd的操作。
代码[4]:函数handle_initrd主要功能是执行Initrd中的linuxrc文件,并且将realfs的根目录设置为当前目录。其实前面也已经提到了,这些操作只对image-cpio的情况下才会去执行。
函数handle_initrd的代码如下:
static void __init handle_initrd(void)
{
int error;
int pid;
[1] real_root_dev = new_encode_dev(ROOT_DEV);
[2] create_dev("/dev/root.old", Root_RAM0);
/* mount initrd on rootfs' /root */
mount_block_root("/dev/root.old", root_mountflags & ~MS_RDONLY);
[3] sys_mkdir("/old", 0700);
root_fd = sys_open("/", 0, 0);
old_fd = sys_open("/old", 0, 0);
/* move initrd over / and chdir/chroot in initrd root */
[4] sys_chdir("/root");
sys_mount(".", "/", NULL, MS_MOVE, NULL);
sys_chroot(".");
/*
* In case that a resume from disk is carried out by linuxrc or one of
* its children, we need to tell the freezer not to wait for us.
*/
current->flags |= PF_FREEZER_SKIP;
[5] pid = kernel_thread(do_linuxrc, "/linuxrc", SIGCHLD);
if (pid > 0)
while (pid != sys_wait4(-1, NULL, 0, NULL))
yield();
current->flags &= ~PF_FREEZER_SKIP;
/* move initrd to rootfs' /old */
sys_fchdir(old_fd);
sys_mount("/", ".", NULL, MS_MOVE, NULL);
/* switch root and cwd back to / of rootfs */
[6] sys_fchdir(root_fd);
sys_chroot(".");
sys_close(old_fd);
sys_close(root_fd);
[7] if (new_decode_dev(real_root_dev) == Root_RAM0) {
sys_chdir("/old");
return;
}
[8] ROOT_DEV = new_decode_dev(real_root_dev);
mount_root();
[9] printk(KERN_NOTICE "Trying to move old root to /initrd ... ");
error = sys_mount("/old", "/root/initrd", NULL, MS_MOVE, NULL);
if (!error)
printk("okay/n");
else {
int fd = sys_open("/dev/root.old", O_RDWR, 0);
if (error == -ENOENT)
printk("/initrd does not exist. Ignored./n");
else
printk("failed/n");
printk(KERN_NOTICE "Unmounting old root/n");
sys_umount("/old", MNT_DETACH);
printk(KERN_NOTICE "Trying to free ramdisk memory ... ");
if (fd < 0) {
error = fd;
} else {
error = sys_ioctl(fd, BLKFLSBUF, 0);
sys_close(fd);
}
printk(!error ? "okay/n" : "failed/n");
}
}
代码[1]:real_root_dev为一个全局变量,用来保存realfs的设备号。
代码[2]:调用mount_block_root将realfs加载到VFS的/root下。
代码[3]:提取rootfs的根文件描述符并将其保存到root_fd,资料中提及其用处就是在后续调用sys_chroot到initrd的文件系统后,处理完init请求后,还能够再次切回到rootfs,这一点在一份IBM官方有关cpio-initrd和image-initrd的执行流程图中可以看到,如下:
代码[4]:sys_chroot到initrd文件系统,前面已经挂载initrd到VFS的root目录下;
代码[5]:执行initrd中的linuxrc,并等待执行结束;
代码[6]:initrd执行结束后,切回到rootfs,不知道为什么直接用节点切呢?
代码[7]:如果real_root_dev直接配置为Root_RAM0,也即直接使用直接使用initrd作为realfs,改变当前目录到initrd中,并直接返回。
代码[8]:执行完Linuxrc后,realfs已经确定,则调用mount_root将realfs挂载到VFS的/root目录下,并将当前的目录配置为VFS的/root。
代码[9]:收尾的工作,例如释放内存等。
4. 真实根文件系统挂载后的操作
下面回过头来再看上面提到的init_post,该函数实际上是在Kernel_init中最后执行的函数。其代码如下:
/* This is a non __init function. Force it to be noinline otherwise gcc
* makes it inline to init() and it becomes part of init.text section
*/
static noinline int init_post(void)
{
/* need to finish all async __init code before freeing the memory */
async_synchronize_full();
free_initmem();
unlock_kernel();
mark_rodata_ro();
system_state = SYSTEM_RUNNING;
numa_default_policy();
if (sys_open((const char __user *) "/dev/console", O_RDWR, 0) < 0)
printk(KERN_WARNING "Warning: unable to open an initial console./n");
(void) sys_dup(0);
(void) sys_dup(0);
current->signal->flags |= SIGNAL_UNKILLABLE;
if (ramdisk_execute_command) {
run_init_process(ramdisk_execute_command);
printk(KERN_WARNING "Failed to execute %s/n",
ramdisk_execute_command);
}
/*
* We try each of these until one succeeds.
*
* The Bourne shell can be used instead of init if we are
* trying to recover a really broken machine.
*/
if (execute_command) {
run_init_process(execute_command);
printk(KERN_WARNING "Failed to execute %s. Attempting "
"defaults.../n", execute_command);
}
run_init_process("/sbin/init");
run_init_process("/etc/init");
run_init_process("/bin/init");
run_init_process("/bin/sh");
panic("No init found. Try passing init= option to kernel.");
}
可以看到,在该函数的最后,以此会去搜索文件并执行ramdisk_execute_command、execute_command、/sbin/init、/etc/init、/bin/init和/bin/sh,如果发现这些文件均不存在的话,则通过panic输出错误命令,并将当前的系统Halt在那里。
-
Linux
+关注
关注
87文章
11310浏览量
209602 -
代码
+关注
关注
30文章
4790浏览量
68650 -
根文件系统
+关注
关注
0文章
25浏览量
11981 -
vfs
+关注
关注
0文章
14浏览量
5260
原文标题:为什么不直接把真实的文件系统配置为根文件系统?Linux根文件系统的挂载过程详解
文章出处:【微信号:gh_c472c2199c88,微信公众号:嵌入式微处理器】欢迎添加关注!文章转载请注明出处。
发布评论请先 登录
相关推荐
评论