0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

OpenAI发布工具库 可在GPU上建立更快、更高效、占内存更少的神经网络

EdXK_AI_News 2018-01-27 00:34 次阅读

OpenAI研究人员日前发布了一个工具库,该工具库可以帮助研究人员在图形处理器(graphics-processor-unit,GPU)上建立更快、更高效、占内存更少的神经网络

OpenAI研究人员日前发布了一个工具库,可以帮助研究人员在图形处理器上建立更快、更高效、占内存更少的神经网络。神经网络由多层相连的节点构成。这类网络的架构根据数据和应用变化很多,但是所有模型都受到它们在图形处理器上运行方式的限制。

以更少的计算能力训练更大模型的一种办法是引入稀疏矩阵。如果一个矩阵里面有很多零,那就视为稀疏矩阵。阵列中的空元素可以在矩阵乘法中压缩和跳过,就在图形处理器中占用的内存更少。进行运算的计算成本与矩阵中非零条目的数量成比例,有了稀疏矩阵就意味着节省了多的计算能力用于构建更广或更深的网络,能训练更高效,进行推断的速度可提高十倍。

OpenAI发布工具库 可在GPU上建立更快、更高效、占内存更少的神经网络

研究人员指出,英伟达并不支持块稀疏模型。所以,OpenAI的团队决定开发核——将软件汇集在硬件上运行的微程序,优化用于为更大的研究圈构建块稀疏网络。

伊隆·马斯克(Elon Musk)的人工智能研究部门的研究人员内部使用这种程序训练长的短时记忆网络,对亚马逊网(Amazon)和互联网电影资料库(IMDB)的评论文本进行情感分析。

“我们的稀疏模型将互联网电影资料库数据集文本水平的艺术状态误差从5.91%降低到5.01%。从我们以往的结果来看,这个提高很有前景,因为之前最好的结果也只是在更短句子水平的数据集运算。”OpenAI在博文中表示。

核心程序在英伟达的统一计算设备架构(CUDA)运算平台编写,OpenAI最近只开发了TensorFlow的服务运行,所以在不同框架下工作的研究人员要编写自己的服务运行,它也只支持英伟达图形处理器。OpenAI的技术人员表示:这确实可以扩展到支持小型块矩阵乘法的其他架构,包含了我知道的大多数架构,但是谷歌的TPU2不在其中。虽然结果很有前景,“但是由于这些核程序仍然很新,我们还没有确定它们能在何时何处帮助“神经网络架构”。实验中,我们提供了一些情景,它能帮助向模型增加稀疏。我们鼓励研究圈帮助进一步探索这个领域。”该研究人员表示。

英伟达知道了这项工作,正在等着代码发布,以便为其提供更广的支持,这名技术人员补充说。OpenAI的工作与麻省理工学院研究人员开发的软件Taco相似,后者产生了自动处理稀疏矩阵所需的代码。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 神经网络
    +关注

    关注

    42

    文章

    4771

    浏览量

    100754
  • gpu
    gpu
    +关注

    关注

    28

    文章

    4736

    浏览量

    128935

原文标题:OpenAI发布可加速GPU机器学习的核心工具库

文章出处:【微信号:AI_News,微信公众号:人工智能快报】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    什么是神经网络加速器?它有哪些特点?

    )和图形处理器(GPU)虽然可以处理神经网络计算,但在能效比和计算密度上往往难以满足特定应用场景的需求。因此,神经网络加速器应运而生,它通过优化硬件架构和算法实现,针对神经网络计算的特
    的头像 发表于 07-11 10:40 484次阅读

    如何在FPGA实现神经网络

    随着人工智能技术的飞速发展,神经网络作为其核心组成部分,已广泛应用于图像识别、语音识别、自然语言处理等多个领域。然而,传统基于CPU或GPU神经网络计算方式在实时性、能效比等方面存在诸多挑战。现场
    的头像 发表于 07-10 17:01 1971次阅读

    BP神经网络和人工神经网络的区别

    BP神经网络和人工神经网络(Artificial Neural Networks,简称ANNs)之间的关系与区别,是神经网络领域中一个基础且重要的话题。本文将从定义、结构、算法、应用及未来发展等多个方面,详细阐述BP
    的头像 发表于 07-10 15:20 1061次阅读

    PyTorch神经网络模型构建过程

    PyTorch,作为一个广泛使用的开源深度学习,提供了丰富的工具和模块,帮助开发者构建、训练和部署神经网络模型。在神经网络模型中,输出层是尤为关键的部分,它负责将模型的预测结果以合适
    的头像 发表于 07-10 14:57 501次阅读

    rnn是递归神经网络还是循环神经网络

    RNN(Recurrent Neural Network)是循环神经网络,而非递归神经网络。循环神经网络是一种具有时间序列特性的神经网络,能够处理序列数据,具有记忆功能。以下是关于循环
    的头像 发表于 07-05 09:52 577次阅读

    递归神经网络是循环神经网络

    递归神经网络(Recurrent Neural Network,简称RNN)和循环神经网络(Recurrent Neural Network,简称RNN)实际是同一个概念,只是不同的翻译方式
    的头像 发表于 07-04 14:54 759次阅读

    人工智能神经网络芯片的介绍

    : 概述 人工智能神经网络芯片是一种新型的处理器,它们基于神经网络的计算模型,通过模拟人脑神经元的连接和交互方式,实现对数据的高效处理。与传统的CPU和
    的头像 发表于 07-04 09:33 764次阅读

    如何使用MATLAB神经网络工具

    神经网络是一种模拟人脑神经元网络的计算模型,广泛应用于各种领域,如图像识别、语音识别、自然语言处理等。在MATLAB中,可以使用神经网络工具箱(Neural Network Toolbox)来构建
    的头像 发表于 07-03 10:34 2493次阅读

    matlab神经网络工具箱结果分析

    神经网络是一种强大的机器学习技术,广泛应用于各种领域,如图像识别、语音识别、自然语言处理等。MATLAB提供了一个功能强大的神经网络工具箱,可以帮助用户快速构建和训练神经网络模型。本文将介绍
    的头像 发表于 07-03 10:32 599次阅读

    bp神经网络和卷积神经网络区别是什么

    BP神经网络(Backpropagation Neural Network)和卷积神经网络(Convolutional Neural Network,简称CNN)是两种不同类型的人工神经网络,它们在
    的头像 发表于 07-03 10:12 1181次阅读

    卷积神经网络和bp神经网络的区别

    卷积神经网络(Convolutional Neural Networks,简称CNN)和BP神经网络(Backpropagation Neural Networks,简称BPNN)是两种
    的头像 发表于 07-02 14:24 3906次阅读

    神经网络在数学建模中的应用

    数学建模是一种利用数学方法和工具来描述和分析现实世界问题的过程。神经网络是一种模拟人脑神经元结构和功能的计算模型,可以用于解决各种复杂问题。在数学建模中,神经网络可以作为一种有效的
    的头像 发表于 07-02 11:29 941次阅读

    建立神经网络模型的三个步骤

    建立神经网络模型是一个复杂的过程,涉及到多个步骤和细节。以下是对建立神经网络模型的三个主要步骤的介绍: 第一步:数据准备 1.1 数据收集 数据是
    的头像 发表于 07-02 11:20 925次阅读

    如何使用Python进行神经网络编程

    。 为什么使用Python? Python是一种广泛使用的高级编程语言,以其易读性和易用性而闻名。Python拥有强大的,如TensorFlow、Keras和PyTorch,这些提供了构建和训练神经网络
    的头像 发表于 07-02 09:58 406次阅读

    FPGA在深度学习应用中或将取代GPU

    最后说,“我们决定专注于软件业务,探索研究提升神经网络性能和降低延迟的方案。Zebra 运行在 FPGA ,因此无需更换硬件就可以支持 AI 推理。FPGA 固件的每次刷新都能给我们带来更高的性能提升,这得益于其
    发表于 03-21 15:19