0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

利用OpenVINO搭建本地智能体流水线

英特尔物联网 来源:英特尔物联网 2024-10-25 16:01 次阅读

作者

杨亦诚 英特尔 AI 软件工程师

智能体 AI Agent 作为大模型的衍生应用,具有对任务的理解、规划与行动能力。它可以通过将一个复杂的用户请求拆分成不同的子任务,并依次调用外部工具来解决这些任务,并将其中每个任务步骤的执行结果,按预先规划的逻辑串联起来,从而达成最终的目的。

接下来我们就通过一个例子,演示如何利用 OpenVINO 工具套件在你的电脑上的一步步搭建本地智能体流水线。

1转换压缩LLM

首先要需要利用 Hugging Face 的 Optimum-intel 命令行工具将原始模型转化为 OpenVINO 的 IR 格式,并对其进行 int4 量化压缩,以实现本地部署的目的。这里我们选择通义千问团队近期发布的 Qwen2.5 大语言模型为例,它可以支持多种不同语言。其中最小3B参数版本的模型便可以对本示例进行复现。

 !optimum-cli export openvino --model "Qwen/Qwen2.5-3B-Instruct"--task text-generation-with-past --trust-remote-code --weight-format int4 --group-size 128 --ratio 1.0 --sym “Qwen2.5-3B-Instruct-int4-ov”

其中"Qwen/Qwen2.5-3B-Instruct"为模型的 HuggingFace 的模型 ID,如果在访问 Hugging Face 模型仓库时,发现网络限制,也可以通过 ModelScope 将原始模型下载到本地,并将该模型 ID 替换为模型的本地路径,例如:"./model/Qwen2.5-3B-Instruct"。

2创建LLM任务

第二步同样可以利用 Optimum-intel 提供的 OpenVINO API 接口将模型部署在指定的硬件平台,这里可以通过指定 device=”gpu” 将模型加载到任意一个 Intel 的独显或是集显上,以最大化模型推理性能。

tokenizer = AutoTokenizer.from_pretrained(llm_model_path, trust_remote_code=True)


ov_config = {hints.performance_mode(): hints.PerformanceMode.LATENCY, streams.num(): "1", props.cache_dir(): ""}


llm = OVModelForCausalLM.from_pretrained(
    llm_model_path,
    device=llm_device.value,
    ov_config=ov_config,
    config=AutoConfig.from_pretrained(llm_model_path, trust_remote_code=True),
    trust_remote_code=True,
)

除了对模型对象进行初始化以外,还需要创建针对模型推理输出的后处理函数,主要目的是为了实现流式输出,以及设置停止字符,让 LLM 在调用工具前停止推理任务。

def text_completion(prompt: str, stop_words) -> str:
  im_end = "<|im_end|>"
  if im_end not in stop_words:
    stop_words = stop_words + [im_end]
  streamer = TextStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)


  stopping_criteria = StoppingCriteriaList([StopSequenceCriteria(stop_words, tokenizer)])
  input_ids = torch.tensor([tokenizer.encode(prompt)])
  generate_kwargs = dict(
    input_ids=input_ids,
    streamer=streamer,
    stopping_criteria=stopping_criteria,
  )
  output = llm.generate(**generate_kwargs)
  output = output.tolist()[0]
  output = tokenizer.decode(output, errors="ignore")
  assert output.startswith(prompt)
  output = output[len(prompt) :].replace("<|endoftext|>", "").replace(im_end, "")


  for stop_str in stop_words:
    idx = output.find(stop_str)
    if idx != -1:
      output = output[: idx + len(stop_str)]
  return output

3定义智能体Prompt模板

这一步也是决定智能体工作模式的关键,通过 Prompt 模板,我们将教会 LLM 一个常规任务的解决路径,以及有哪些类别的外部工具可能帮助它解决特定问题。可以看到在下面这个典型 ReAct 类 Prompt 模板中,我们定义外部工具的具体信息模板,以及 LLM 在执行任务过程中的输出模板,其中 “Observation” 后内容为外部工具调用后返回的结果,并非由 LLM 直接生成。可以看到在该模板中, LLM 可能会被执行多次,直到上下文中的信息足够回答用户请求。

TOOL_DESC = """{name_for_model}: Call this tool to interact with the {name_for_human} API. What is the {name_for_human} API useful for? {description_for_model} Parameters: {parameters}"""


PROMPT_REACT = """Answer the following questions as best you can. You have access to the following APIs:


{tools_text}


Use the following format:


Question: the input question you must answer
Thought: you should always think about what to do
Action: the action to take, should be one of [{tools_name_text}]
Action Input: the input to the action
Observation: the result of the action
... (this Thought/Action/Action Input/Observation can be repeated zero or more times)
Thought: I now know the final answer
Final Answer: the final answer to the original input question


Begin!


Question:{query}"""

4输出过滤与工具定义

由于智能体需要和外部工具频繁交互,发出指令并获取工具反馈结果,因此我们需要在 LLM 输出时,判断哪些关键词代表模型需要调用工具,哪些关键词代表收集工具反馈结果。在这里例子中,当 LLM 输出 “Action:" 后的字符,代表接下来需要调用的工具函数名称,输出 “Action Input” 后的字符,代表输入给该工具的输入参数,以及 “Observation” 代表接下来需要直接输出工具的执行结果,因此它也是终止当前 LLM 推理任务的特殊字符。

def parse_latest_tool_call(text):
    tool_name, tool_args = "", ""
    i = text.rfind("
Action:")
    j = text.rfind("
Action Input:")
    k = text.rfind("
Observation:")
    if 0 <= i < j:  # If the text has `Action` and `Action input`,
        if k < j:  # but does not contain `Observation`,
            # then it is likely that `Observation` is ommited by the LLM,
            # because the output text may have discarded the stop word.
            text = text.rstrip() + "
Observation:"  # Add it back.
        k = text.rfind("
Observation:")
        tool_name = text[i + len("
Action:") : j].strip()
        tool_args = text[j + len("
Action Input:") : k].strip()
        text = text[:k]
    return tool_name, tool_args, text

为了告诉 LLM 什么时候该调用什么工具,以及这些工具的基本输入和输入参数格式,我们在完成工具函数的编写后,还需要以字典的形式,将这些信息送入先前定义的 Prompt 模板中,参考示例如下:

tools = [
    {
        "name_for_human": "get weather",
        "name_for_model": "get_weather",
        "description_for_model": 'Get the current weather in a given city name."',
        "parameters": [
            {
                "name": "city_name",
                "description": "City name",
                "required": True,
                "schema": {"type": "string"},
            }
        ],
    },
    {
        "name_for_human": "image generation",
        "name_for_model": "image_gen",
        "description_for_model": "AI painting (image generation) service, input text description, and return the image URL drawn based on text information.",
        "parameters": [
            {
                "name": "prompt",
                "description": "describe the image",
                "required": True,
                "schema": {"type": "string"},
            }
        ],
    },
]

在这个例子中,我们定义一个天气查询工具以及一个文生图工具,他们分别会调用响应的 API 服务完成响应任务。

5构建智能体

接下来我们需要将以上定义的函数串联起来,构建一个简单的智能体流水线。第一步会将用户请求经 Prompt 模板格式化后送入 LLM,接下来解析 LLM 输出,并判断是否需要调用外部工具 “Action” 。如果需要调用外部工具,则智能体会运行该工具函数,获得运行结果,最后将结果数据合并到下一轮的输入 Prompt 中,由 LLM 判断是否还需要再次调用其他工具,再进行一次循环,如果不需要调用工具,并且当前得到的信息已经可以满足用户请求,那 LLM 将整合并基于这个过程中所有的 “Observation” 信息,输出最终答案 “Final Answer”。

    while True:
        output = text_completion(planning_prompt + text, stop_words=["Observation:", "Observation:
"])
        action, action_input, output = parse_latest_tool_call(output)
        if action:
            observation = call_tool(action, action_input)
            output += f"
Observation: = {observation}
Thought:"
            observation = f"{observation}
Thought:"
            print(observation)
            text += output
        else:
            text += output
break

该示例的运行效果如下,这里我们让智能体“根据当前伦敦的天气,生成一张大本钟的照片”。可以看到智能体按照我们既定的 Prompt 策略,将用户问题拆分后,分别调用预先定义的不同工具,根据用户要求得到最终结果。当然你也可以用中文向它发出请求。

query = "get the weather in London, and create a picture of Big Ben based on the weather information"


response,history=llm_with_tool(prompt=query,history=history,list_of_tool_info=tools)

“Thought: First, I need to use the get_weather API to get the current weather in London.

Action: get_weather

Action Input: {"city_name": "London"}

Observation:

{'current_condition': {'temp_C': '11', 'FeelsLikeC': '10', 'humidity': '94', 'weatherDesc': [{'value': 'Overcast'}], 'observation_time': '12:23 AM'}}

Thought:

Now that I have the weather information, I will use the image_gen API to generate an image of Big Ben based on the weather conditions.

Action: image_gen

Action Input: {"prompt": "Big Ben under overcast sky with temperature 11°C and humidity 94%"}

Observation:

{"image_url": "https://image.pollinations.ai/prompt/Big%20Ben%20under%20overcast%20sky%20with%20temperature%2011%C2%B0C%20and%20humidity%2094%25"}

Thought:

The image has been generated successfully.

Final Answer: The current weather in London is overcast with a temperature of 11°C and humidity of 94%. Based on this information, here is the image of Big Ben under an overcast sky: ![](https://image.pollinations.ai/prompt/Big%20Ben%20under%20overcast%20sky%20with%20temperature%2011%C2%B0C%20and%20humidity%2094%25)“

6总结

该示例以 OpenVINO 作为 LLM 的推理后端,一步步构建起了一个简单的智能体流水线,可以看到这个示例中除了 Optimum-intel,没有其他外部依赖需要安装,因此它也是一个非常基础的的智能体构建过程。除此以外,该示例使用 3B 大小 SLM 便可以实现该智能体的构建,同时带来不错的性能表现,是非常适合在本地构建的智能体示例。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 流水线
    +关注

    关注

    0

    文章

    117

    浏览量

    25558
  • AI
    AI
    +关注

    关注

    87

    文章

    29586

    浏览量

    267869
  • 模型
    +关注

    关注

    1

    文章

    3095

    浏览量

    48618
  • OpenVINO
    +关注

    关注

    0

    文章

    82

    浏览量

    160

原文标题:从0到1构建 OpenVINO™ 智能体流水线|开发者实战

文章出处:【微信号:英特尔物联网,微信公众号:英特尔物联网】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    FPGA中的流水线设计

    令预取、 译码、 执行、 写回结果, openrisc采用的是 5 级整数流水线。当然它们的核心思想都是利用并行执行提高效率。总结一下,流水线就是插入寄存器,以面积换取速度。`
    发表于 10-26 14:38

    周期精确的流水线仿真模型

    使用软件仿真硬件流水线是很耗时又复杂的工作,仿真过程中由于流水线的冲突而导致运行速度缓慢。本文通过对嵌入式处理器的流水线, 指令集, 设备控制器等内部结构的分析和
    发表于 12-31 11:30 9次下载

    什么是流水线技术

    什么是流水线技术 流水线技术
    发表于 02-04 10:21 3909次阅读

    流水线中的相关培训教程[1]

    流水线中的相关培训教程[1]  学习目标     理解流水线中相关的分类及定义;
    发表于 04-13 15:56 1026次阅读

    流水线中的相关培训教程[4]

    流水线中的相关培训教程[4] 下面讨论如何利用编译器技术来减少这种必须的暂停,然后论述如何在流水线中实现数据相关检测和定向。
    发表于 04-13 16:09 4710次阅读

    电镀流水线的PLC控制

    电镀流水线的PLC控制电镀流水线的PLC控制电镀流水线的PLC控制
    发表于 02-17 17:13 36次下载

    装配流水线控制系统设计

    装配流水线控制系统设计
    发表于 12-17 15:26 14次下载

    FPGA之流水线练习(3):设计思路

    流水线的平面设计应当保证零件的运输路线最短,生产工人操作方便,辅助服务部门工作便利,最有效地利用生产面积,并考虑流水线安装之间的相互衔接。为满足这些要求,在流水线平面布置时应考虑
    的头像 发表于 11-28 07:07 2301次阅读

    FPGA之为什么要进行流水线的设计

    流水线又称为装配线,一种工业上的生产方式,指每一个生产单位只专注处理某一个片段的工作。以提高工作效率及产量;按照流水线的输送方式大体可以分为:皮带流水装配线、板链线、倍速链、插件线、网带线、悬挂线及滚筒
    的头像 发表于 11-28 07:04 3546次阅读

    各种流水线特点及常见流水线设计方式

    按照流水线的输送方式大体可以分为:皮带流水装配线、板链线、倍速链、插件线、网带线、悬挂线及滚筒流水线这七类流水线
    的头像 发表于 07-05 11:12 7167次阅读
    各种<b class='flag-5'>流水线</b>特点及常见<b class='flag-5'>流水线</b>设计方式

    如何选择合适的LED生产流水线输送方式

    LED生产流水线输送形式分为平面直线传输流水线、各种角度平面转弯传输流水线、斜面上传流水线、斜面下传流水线这四种输送方式,企业也是可以根据L
    发表于 08-06 11:53 985次阅读

    嵌入式_流水线

    流水线一、定义流水线是指在程序执行时多条指令重叠进行操作的一种准并行处理实现技术。各种部件同时处理是针对不同指令而言的,他们可同时为多条指令的不同部分进行工作。• 把一个重复的过程分解为若干个子过程
    发表于 10-20 20:51 6次下载
    嵌入式_<b class='flag-5'>流水线</b>

    FPGA中流水线的原因和方式

    本文解释了流水线及其对 FPGA 的影响,即延迟、吞吐量、工作频率的变化和资源利用率。
    的头像 发表于 05-07 16:51 5900次阅读
    FPGA中<b class='flag-5'>流水线</b>的原因和方式

    CPU流水线的问题

    1989 年推出的 i486 处理器引入了五级流水线。这时,在 CPU 中不再仅运行一条指令,每一级流水线在同一时刻都运行着不同的指令。这个设计使得 i486 比同频率的 386 处理器性能提升了不止一倍。
    的头像 发表于 09-22 10:04 1903次阅读

    什么是流水线 Jenkins的流水线详解

    jenkins 有 2 种流水线分为声明式流水线与脚本化流水线,脚本化流水线是 jenkins 旧版本使用的流水线脚本,新版本 Jenkin
    发表于 05-17 16:57 1021次阅读