0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

【每天学点AI】KNN算法:简单有效的机器学习分类器

华清远见工控 2024-10-31 14:09 次阅读

想象一下,你正在计划一个周末的户外活动,你可能会问自己几个问题来决定去哪里:

"今天天气怎么样?"如果天气晴朗,你可能会选择去公园野餐;如果天气阴沉,你可能会选择去博物馆。

这个决策过程,其实就是一个简单的分类问题,而KNN(K-Nearest Neighbors算法正是模仿这种人类决策过程的机器学习算法。

| 什么是KNN?

KNN(K-Nearest Neighbors)算法是一种基本的分类与回归方法,属于监督学习范畴。它的核心思想是“物以类聚”,即相似的数据应有相似的输出。对于任意n维输入向量,分别对应于特征空间中的一个点,输出为该特征向量所对应的类别标签或预测值。

| KNN的工作原理

KNN算法通过测量不同特征值之间的距离来进行分类。对于一个新的输入样本,KNN算法会在训练数据集中寻找与该样本最近的K个样本(即K个邻居),然后根据这些邻居的类别来预测新样本的类别。在分类问题中,常见的做法是通过“投票法”决定新样本的类别,即选择K个邻居中出现次数最多的类别作为新样本的预测类别。

wKgZomcjHy6ANdEZAAE9KVCoApQ653.png

举个例子:想象一下,你是一个新来的大学生,想要加入一个社团。但是,你对这个大学里的社团不太了解,所以你想找一个和你兴趣最接近的社团加入。你决定问问你周围的同学,看看他们都加入了哪些社团。

①你首先会找到几个你认识的同学(比如5个),这些同学就像是你的“邻居”,因为他们离你最近,你最容易从他们那里得到信息

②然后,你问问这些同学他们都加入了哪些社团,可能是篮球社、舞蹈社、棋艺社等等。

③统计一下这些同学中,哪个社团被提到的次数最多。比如,有3个同学提到了篮球社,2个提到了舞蹈社。

④根据这个“投票”结果,你决定加入篮球社,因为这是被提到次数最多的社团,你觉得这个社团可能最符合你的兴趣。

在这个例子中,你就是那个“新的输入样本”,你的同学就是“训练数据集”,你选择社团的过程就是KNN算法的“分类”过程。你通过了解你周围同学的选择(即寻找最近的K个邻居),然后根据他们的选择来决定你自己的选择(即根据邻居的类别来预测你的类别)。这个过程就是KNN算法的核心思想:通过观察和你相似的人的选择,来预测你可能会做出的选择。

| 如何构建KNN模型?

构建KNN模型也不是简单地像上述例子分几个步骤,需要有完整科学的流程。

  • 选择距离度量:KNN算法需要一个距离度量来计算样本之间的相似度,常见的距离度量包括欧氏距离、曼哈顿距离等。
  • 确定K值:K值的选择对算法的性能有重要影响,通常通过交叉验证来选择最佳的K值。
  • 寻找最近邻:对于每一个新的数据点,算法会在训练集中找到与其距离最近的K个点。
  • 分类决策:根据K个最近邻的类别,通过多数表决等方式来决定新数据点的类别。

| KNN的应用

KNN(K-Nearest Neighbors)算法在日常生活中的应用非常广泛,比如:

推荐系统

当你在电商平台上购物时,系统会根据你过去的购买记录和浏览习惯,推荐与你之前购买或浏览过的商品相似的其他商品。这里,KNN算法通过分析用户行为数据,找到与当前用户行为最相似的其他用户,然后推荐那些相似用户喜欢的商品。

餐厅评分

当你使用美食应用寻找餐厅时,应用可能会根据你的位置和偏好,推荐附近的高分餐厅。KNN算法在这里通过分析其他用户的评价和评分,找到与你的搜索条件最匹配的餐厅,并预测它们的受欢迎程度。

房价预测

如果你想出售或购买房屋,KNN算法可以帮助你估计房屋的价值。通过输入房屋的特征(如面积、位置、建造年份等),KNN算法会找到附近相似房屋的销售价格,然后根据这些最近邻居的价格来预测目标房屋的价格。

| KNN与其他算法的比较

KNN算法与其他常见的机器学习算法相比,有独特的优势和局限性。

与决策树(Decision Trees)比较

优势:

  • KNN不需要训练过程,可以立即对新数据做出预测。
  • KNN可以处理非线性数据,而决策树在处理非线性数据时可能需要更复杂的模型。

劣势:

  • 决策树模型更易于解释和可视化,而KNN的预测过程可能不够直观。
  • 决策树通常对噪声数据和异常值更鲁棒,而KNN对这些数据更敏感。

与支持向量机(SVM)比较

优势:

  • KNN算法实现简单,易于理解和使用。
  • KNN可以很好地处理多分类问题,而SVM在多分类问题上需要额外的技术如一对一或一对多。

劣势:

  • SVM在高维空间中表现更好,尤其是在特征空间很大时。
  • SVM可以提供更好的泛化能力,而KNN可能会过拟合,尤其是在样本数量较少时。

与随机森林(Random Forest)比较

优势:

  • KNN不需要训练时间,而随机森林需要构建多个决策树并进行聚合
  • KNN可以处理非线性和高维数据。

劣势:

  • 随机森林在处理大型数据集时通常更快,而KNN在大数据集上可能会非常慢。
  • 随机森林提供了更好的泛化能力,并且对噪声和异常值更鲁棒。

神经网络(Neural Networks)比较

优势:

  • KNN算法简单,不需要复杂的模型训练过程。
  • KNN可以很容易地解释和理解模型的预测过程。

劣势:

  • 神经网络可以捕捉更复杂的模式和非线性关系,尤其是在深度学习模型中。
  • 神经网络通常在大规模数据集上表现更好,尤其是在图像和语音识别等领域。

与梯度提升机(Gradient Boosting Machines, GBM)比较

优势:

  • KNN不需要训练,可以快速对新数据进行预测。
  • KNN可以处理分类和回归问题,而GBM主要用于回归问题。

劣势:

  • GBM通常在预测准确性上优于KNN,尤其是在结构化数据上。
  • GBM可以处理更复杂的数据模式,并且对噪声和异常值更鲁棒。

KNN算法在需要快速原型开发和对模型解释性要求较高的场合很适用,在需要处理大规模数据集、高维数据或需要更强泛化能力的场景下,可能需要考虑其他更复杂的算法。

所以在实际应用中,应该根据具体问题的数据特征、解释性需求以及计算资源等方面的考量,选择更合适的算法,提升模型的效果和应用的可行性。

KNN属于机器学习算法,在AI全体系课程中,它不仅是机器学习入门者最先接触的算法之一,也是理解其他更复杂机器学习算法的基础,对于深入学习机器学习和理解其他更高级的算法有着重要的意义。

AI体系化学习路线

wKgaombzzxSAdyb-AAILSe8A5AM65.jpeg

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • AI
    AI
    +关注

    关注

    87

    文章

    29576

    浏览量

    267858
  • 人工智能
    +关注

    关注

    1789

    文章

    46525

    浏览量

    236764
  • 机器学习
    +关注

    关注

    66

    文章

    8334

    浏览量

    132245
  • KNN算法
    +关注

    关注

    0

    文章

    3

    浏览量

    6132
收藏 人收藏

    评论

    相关推荐

    人工智能、机器学习和深度学习存在什么区别

    人工智能指的是在某种程度上显示出类似人类智能的设备。AI有很多技术,但其中一个很大的子集是机器学习——让算法从数据中学习
    发表于 10-24 17:22 2378次阅读
    人工智能、<b class='flag-5'>机器</b><b class='flag-5'>学习</b>和深度<b class='flag-5'>学习</b>存在什么区别

    AI大模型与深度学习的关系

    AI大模型与深度学习之间存在着密不可分的关系,它们互为促进,相辅相成。以下是对两者关系的介绍: 一、深度学习AI大模型的基础 技术支撑 :深度学习
    的头像 发表于 10-23 15:25 224次阅读

    AI大模型与传统机器学习的区别

    多个神经网络层组成,每个层都包含大量的神经元和权重参数。 传统机器学习 :模型规模相对较小,参数数量通常只有几千到几百万个,模型结构相对简单。 二、训练数据需求 AI大模型 :需要大规
    的头像 发表于 10-23 15:01 225次阅读

    RISC-V如何支持不同的AI机器学习框架和库?

    RISC-V如何支持不同的AI机器学习框架和库?还请坛友们多多指教一下。
    发表于 10-10 22:24

    AI引擎机器学习阵列指南

    AMD Versal AI Core 系列和 Versal AI Edge 系列旨在凭借 AI 引擎机器学习 ( ML ) 架构来提供突破性
    的头像 发表于 09-18 09:16 256次阅读
    <b class='flag-5'>AI</b>引擎<b class='flag-5'>机器</b><b class='flag-5'>学习</b>阵列指南

    旗晟机器人人员行为监督AI智慧算法

    ,以实现对工业场景巡检运维的高效化目标。那么,下面我们来谈谈旗晟机器AI智慧算法之一——人员行为监督AI智慧算法。 旗晟人员行为监督
    的头像 发表于 07-24 17:05 230次阅读
    旗晟<b class='flag-5'>机器</b>人人员行为监督<b class='flag-5'>AI</b>智慧<b class='flag-5'>算法</b>

    深度学习中的时间序列分类方法

    时间序列分类(Time Series Classification, TSC)是机器学习和深度学习领域的重要任务之一,广泛应用于人体活动识别、系统监测、金融预测、医疗诊断等多个领域。随
    的头像 发表于 07-09 15:54 588次阅读

    机器学习算法原理详解

    机器学习作为人工智能的一个重要分支,其目标是通过让计算机自动从数据中学习并改进其性能,而无需进行明确的编程。本文将深入解读几种常见的机器学习
    的头像 发表于 07-02 11:25 620次阅读

    机器学习的经典算法与应用

    关于数据机器学习就是喂入算法和数据,让算法从数据中寻找一种相应的关系。Iris鸢尾花数据集是一个经典数据集,在统计学习
    的头像 发表于 06-27 08:27 1523次阅读
    <b class='flag-5'>机器</b><b class='flag-5'>学习</b>的经典<b class='flag-5'>算法</b>与应用

    基于神经网络的呼吸音分类算法

    出的方法与其他机器学习模型在不同情况下的性能和鲁棒性进行比较。1.用于初始模型检查的简单噪声二值分类实验。2.使用个体呼吸周期作为输入的4类异常分类
    发表于 05-31 12:05

    ai芯片是什么东西 ai芯片和普通芯片的区别

    AI芯片是专门为人工智能应用设计的处理,它们能够高效地执行AI算法,特别是机器学习和深度
    的头像 发表于 03-21 18:11 5803次阅读

    分析 丨AI算法愈加复杂,但是机器视觉的开发门槛在降低

    准确判断。此外,AI大模型近两年受到关注,也可能被引入机器视觉领域,在跨模态理解和推理等方面展现出更强能力。 AI算法的复杂程度越来越高,机器
    的头像 发表于 02-19 16:49 589次阅读
    分析 丨<b class='flag-5'>AI</b><b class='flag-5'>算法</b>愈加复杂,但是<b class='flag-5'>机器</b>视觉的开发门槛在降低

    AI算法的本质是模拟人类智能,让机器实现智能化

    电子发烧友网报道(文/李弯弯)AI算法是人工智能领域中使用的算法,用于模拟、延伸和扩展人的智能。这些算法可以通过机器
    的头像 发表于 02-07 00:07 5462次阅读

    什么是特征工程?机器学习的特征工程详解解读

    One-hot 编码对于用机器学习模型能够理解的简单数字数据替换分类数据很有用。
    发表于 12-28 17:14 280次阅读
    什么是特征工程?<b class='flag-5'>机器</b><b class='flag-5'>学习</b>的特征工程详解解读

    一文详解机器学习中的梯度提升机

    AdaBoost(自适应增强)是机器学习历史上第一个将各种弱分类组合成单个强分类的增强
    发表于 12-19 14:24 1133次阅读
    一文详解<b class='flag-5'>机器</b><b class='flag-5'>学习</b>中的梯度提升机