0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

车载大模型分析揭示:存储带宽对性能影响远超算力

佐思汽车研究 来源:未知 2024-11-09 10:36 次阅读

车载大模型的定义尚无,传统大模型即LLM的参数一般在70亿至2000亿之间,而早期的CNN模型参数通常不到1000万,CNN模型目前大多做骨干网使用,参数飞速增加。特斯拉使用META的RegNet,参数为8400万,消耗运算资源很少,得分82.9也算不低;小米UniOcc使用META的ConvNeXt-B,参数8900万,消耗运算资源最少,得分83.8;华为RadOcc使用微软的Swin-B,参数8800万。相对于早期的CNN模型,这些都可以叫大模型,但要与真正意义上的ChatGPT之类的LLM大模型比,这些是小模型都称不上,只能叫微模型。

不过,端到端的出现改变了这一现状,端到端实际上是内嵌了一个小型LLM,随着喂养数据的增加,这个大模型的参数会越来越大,最初阶段的模型大小大概是100亿参数,不断迭代,最终会达到1000亿以上。非安全类的大模型应用基本不用考虑计算问题,所以只要是个手机都敢说能跑数百亿的大模型,实际很多算力不如手机的电脑也能跑,因为延迟多几秒几十秒也没有问题,但自动驾驶必须将延迟降低到几十毫秒内。但你要以为这对算力要求更高了,那就大错特错了,存储带宽远比算力重要千倍。

当前的主流 LLM 基本都是Decoder Only的Transformer模型,其推理过程可分为两个阶段:

d3575588-903e-11ef-a511-92fbcf53809c.png

图片来源:论文 A Survey on Efficient Inference for Large Language Models

Prefill:根据输入Tokens(Recite, the, first, law, of, robotics) 生成第一个输出 Token(A),通过一次Forward就可以完成,在Forward中,输入Tokens间可以并行执行(类似 Bert这些Encoder模型),因此执行效率很高。

Decoding:从生成第一个Token(A)之后开始,采用自回归方式一次生成一个Token,直到生成一个特殊的Stop Token(或者满足用户的某个条件,比如超过特定长度)才会结束,假设输出总共有N个Token,则Decoding阶段需要执行N-1次Forward,这N-1次Forward 只能串行执行,效率很低。另外,在生成过程中,需要关注的Token越来越多(每个Token 的生成都需要Attention之前的Token),计算量也会适当增大。

LLM推理计算过程时间分布

d383974c-903e-11ef-a511-92fbcf53809c.png

图片来源:论文Memory Is All You Need: An Overview of Compute-in-Memory Architectures for Accelerating Large Language Model Inference

在车载自动驾驶应用场合,序列长度基本可等同于摄像头的像素数量和激光雷达的点云密度。

d3adee5c-903e-11ef-a511-92fbcf53809c.png

图片来源:论文Memory Is All You Need: An Overview of Compute-in-Memory Architectures for Accelerating Large Language Model Inference

在 LLM 推理中最关键的就是上图中的Multi-Head Attention(MHA),其主要的计算集中在左图中灰色的 Linear(矩阵乘)和Scaled Dot-Product Attention中的MatMul 矩阵乘法。

图中的Mask是一个下三角矩阵,也是因为这个下三角矩阵实现了LLM Decoder的主要特性,每个Token都只能看到当前位置及之前的Token。其中的QKV可以理解为一个相关性矩阵,4个Token对应4 个Step,其中:

Step 2依赖Step 1的结果,相关性矩阵的第1行不用重复计算。

Step 3依赖Step 1和Step 2的结果,相关性矩阵的第1行和第2行不用重复计算。

Step 4依赖Step 1、Step 2和Step 3的结果,相关性矩阵的第1行、第2行和第3行不用重复计算。

在Decoding阶段Token是逐个生成的,上述的计算过程中每次都会依赖之前的结果,换句话说这是串行计算,而非GPU擅长的并行计算,GPU大部分时候都在等待数据搬运。加速的办法是计算当前Token时直接从KV Cache中读取而不是重新计算,对于通用LLM,应用场景是要考虑多个并发客户使用,即Batch Size远大于1,KV Cache的缓存量会随着Batch Size暴增,但在车里用户只有一个,就是自动驾驶端到端大模型,即Batch Size为1。

因为Decoding阶段Token逐个处理,使用KV Cache之后,上面介绍的Multi-Head Attention 里的矩阵乘矩阵操作全部降级为矩阵乘向量即GEMV。此外,Transformer模型中的另一个关键组件FFN 中主要也包含两个矩阵乘法操作,但 Token之间不会交叉融合,也就是任何一个Token都可以独立计算,因此在Decoding阶段不用Cache之前的结果,但同样会出现矩阵乘矩阵操作降级为矩阵乘向量。Prefill阶段则是GEMM,矩阵与矩阵的乘法。

矩阵乘向量操作是明显的访存bound,而以上操作是LLM推理中最主要的部分,这也就导致LLM推理是访存bound类型。

三星对GPT大模型workload分析

d3dfe038-903e-11ef-a511-92fbcf53809c.png

图片来源:SAMSUNG

上图是三星对GPT大模型workload分析。在运算操作数量上,GEMV所占的比例高达86.53%;在大模型运算延迟分析上,82.27%的延迟都来自GEMV,GEMM所占只有2.12%,非线性运算也就是神经元激活部分占的比例也远高于GEMM。

三星对GPU利用率的分析

d41bc45e-903e-11ef-a511-92fbcf53809c.png

图片来源:SAMSUNG

上图是三星对GPU利用率的分析,可以看出在GEMV算子时,GPU的利用率很低,一般不超过20%,换句话说80%的时间GPU都是在等待存储数据的搬运。还有如矩阵反转,严格地说没有任何运算,只是存储行列对调,完全是存储器和CPU在忙活。解决办法很简单且只有一个,就是用HBM高宽带内存。

与传统LLM最大不同就是车载的Batch Size是1,导致GPU运算效率暴跌,传统LLM的Batch Size通常远大于1,这让GPU效率增加。

d44a5206-903e-11ef-a511-92fbcf53809c.png

图片来源:论文SARATHI: Effcient LLM Inference by Piggybacking Decodes with Chunked Preflls

图上不难看出,Batch Size越大,推理速度反而越快,但KV Cache容量会暴增;车载的Batch Size是1,推理速度反而很慢,好处是根本不用考虑KV Cache的容量。

最终我们可以得出结论,存储带宽决定了推理计算速度的上限。假设一个大模型参数为70亿,按照车载的INT8精度,它所占的存储是7GB,如果是英伟达的RTX4090,它的显存带宽是1008GB/s,也就是每7毫秒生成一个token,这个就是RTX4090的理论速度上限。特斯拉第一代FSD芯片的存储带宽是63.5GB/s,即每110毫秒生成一个token,帧率不到10Hz,自动驾驶领域一般图像帧率是30Hz;英伟达的Orin存储带宽是204.5GB/s,即每34毫秒生成一个token,勉强可以达到30Hz,注意这只是计算的数据搬运所需要的时间,数据计算的时间都完全忽略了,实际速度要远低于这个数据。并且一个token也不够用,至少需要两个token,端到端的最终输出结果用语言描述就是一段轨迹,比如直行,直行需要有个限制条件,至少有个速度的限制条件,多的可能需要5个以上token,简单计算即可得出存储带宽需要1TB/s以上。

实际情况远比这个复杂的多。车载领域不是传统LLM使用CPU和GPU分离形式,车载领域的计算SoC都是将CPU和AI运算部分合二为一,AI运算部分通常是GPU或加速器是和CPU共享内存的。而在非车载领域,GPU或AI运算部分有独立的存储,即显存。车载领域共享内存一般是LPDDR,它主要是为CPU设计的,注重速度即频率而非带宽。不像显存,一般是GDDR或HBM,注重带宽,不看重频率高低。上述所有理论都是基于显存的,在车载领域共享LPDDR,其性能远远低于单独配置的显存,无论是速度还是容量,共享存储都必须远比单独的显存要高才能做到大模型推理计算。

理想用英伟达Orin做了测试,纯端到端模式延迟高达1.5秒。

d4829288-903e-11ef-a511-92fbcf53809c.png

图片来源:论文DRIVEVLM: The Convergence of Autonomous Driving and Large Vision-Language Models

所以车载领域存储比算力重要很多,最好的解决办法是HBM,但太贵了,32GB HBM2最低成本也得2000美元,汽车领域对价格还是比较敏感的,退而求其次,就是GDDR了。GDDR6的成本远低于HBM,32GB GDDR6大概只要180美元或更低。

几代GDDR的性能对比

d4b3bd5e-903e-11ef-a511-92fbcf53809c.png

整理:佐思汽研

基本上GDDR6的理论上限就是672GB/s,特斯拉第二代FSD芯片就支持第一代GDDR6,HW4.0上的GDDR6容量为32GB,型号为MT61M512M32KPA-14,频率1750MHz(LPDDR5最低也是3200MHz之上),是第一代GDDR6,速度较低。即使用了GDDR6,要流畅运行百亿级别的大模型,还是无法实现,不过已经是目前最好的了。

GDDR7正式标准在2024年3月公布,不过三星在2023年7月就发布了全球首款GDDR7,目前SK Hynix和美光也都有GDRR7产品推出。有些人会说,换上GDDR7显存不就行了,当然没那么容易,GDDR需要特殊的物理层和控制器,芯片必须内置GDDR的物理层和控制器才能用上GDDR,Rambus和新思科技都有相关IP出售。

d5223054-903e-11ef-a511-92fbcf53809c.png

图片来源:网络

在芯片领域,GDDR7增加的成本和LPDDR5X一样的。

特斯拉的HW4.0过了一年半毫无动作,笔者认为特斯拉的第二代FSD芯片显然是落伍了,特斯拉也不打算大规模用了,特斯拉的第三代FSD芯片应该正在开发中,可能2025年底就完成开发,至少支持GDDR6X。

大模型时代,Attention Is All You Need,同样大模型时代 Memory Is All You Need。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 存储
    +关注

    关注

    13

    文章

    4256

    浏览量

    85644
  • 带宽
    +关注

    关注

    3

    文章

    907

    浏览量

    40835
  • LLM
    LLM
    +关注

    关注

    0

    文章

    272

    浏览量

    304

原文标题:车载大模型计算分析:存储带宽远比算力重要

文章出处:【微信号:zuosiqiche,微信公众号:佐思汽车研究】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    【「芯片 | 高性能 CPU/GPU/NPU 微架构分析」阅读体验】--全书概览

    1章 从TOP500和MLPerf看芯片格局 1.1科学最前沿TOP500 1.2 AI
    发表于 10-15 22:08

    名单公布!【书籍评测活动NO.43】 芯片 | 高性能 CPU/GPU/NPU 微架构分析

    更高、更密集的应用需求。 12年前,我与本书作者相识时,他向我提出一个想法:建立中关村在线高性能计算频道。该频道隶属于核心硬件事业部,聚焦芯片相关的产品技术分析、评测,并为企业客户
    发表于 09-02 10:09

    模型时代的需求

    现在AI已进入大模型时代,各企业都争相部署大模型,但如何保证大模型,以及相关的稳定性和性能
    发表于 08-20 09:04

    名单公布!【书籍评测活动NO.41】大模型时代的基础架构:大模型中心建设指南

    工作日内未联系,视为放弃本次试用评测资格! 书籍介绍 大模型是近年来引人注目的热点之一。大模型蓬勃发展的基础,是针对其需求设计的及基础架构。本书针对如何为大
    发表于 08-16 18:33

    IaaS+on+DPU(IoD)+下一代高性能底座技术白皮书

    、VMware、Palo Alto 等公司纷纷推出相关解决方案。这些方案背后共同的本质思想是:将云计算的 IaaS 层组件从服务器侧卸载后围绕 DPU 构筑高性能底座,与 AWS、阿里云的技术路线不谋而合
    发表于 07-24 15:32

    中国中心市场持续增长,智能规模快速崛起

    7月24日,中国信息通信研究院(简称“中国信通院”)权威发布了《中国中心服务商分析报告(2024年)》,该报告深入剖析了中国中心市场
    的头像 发表于 07-24 15:25 420次阅读

    力系列基础篇——与计算机性能:解锁超能力的神秘力量!

    在《力系列基础篇——101:从零开始了解》中,相信各位粉丝初步了解到人工智能的“发动机”和核心驱动力:
    的头像 发表于 07-11 08:04 104次阅读
    <b class='flag-5'>算</b>力系列基础篇——<b class='flag-5'>算</b><b class='flag-5'>力</b>与计算机<b class='flag-5'>性能</b>:解锁超能力的神秘力量!

    2024多样性产业峰会:江波龙解码AI存储方案的未来之路

    6月18日,多样性产业峰会2024在北京圆满举行,江波龙企业级存储事业部市场总监曹浔峰受邀出席本次峰会并发表了《大模型时代AI存储方案挑
    的头像 发表于 06-21 08:20 490次阅读
    2024多样性<b class='flag-5'>算</b><b class='flag-5'>力</b>产业峰会:江波龙解码AI<b class='flag-5'>存储</b>方案的未来之路

    中心:数字经济发展的新引擎

    、建设与发展,并分析其对数字经济发展的影响。01、中心的定义与概述中心是指具备高性能计算
    的头像 发表于 04-13 08:27 1570次阅读
    <b class='flag-5'>算</b><b class='flag-5'>力</b>中心:数字经济发展的新引擎

    液冷是大模型需求的必然选择?|英伟达 GTC 2024六大亮点

    在这个以高性能计算和大模型推动未来通用人工智能时代,已成为科技发展的隐形支柱。本文将重点探讨
    的头像 发表于 04-10 12:57 501次阅读
    液冷是大<b class='flag-5'>模型</b>对<b class='flag-5'>算</b><b class='flag-5'>力</b>需求的必然选择?|英伟达 GTC 2024六大亮点

    能RADXA微服务器试用体验】Radxa Fogwise 1684X Mini 规格

    通过网络可以了解到,能RADXA微服务器的具体规格: 处理器:BM1684X :高达32Tops INT8峰值 内存:16GB L
    发表于 02-28 11:21

    Sora需求引发业界对集结国内AI企业的探讨

    据周鸿祎观察,Sora视频分析所需远超千亿规模模型。因而,考虑到如今国内芯片供应受限,
    的头像 发表于 02-25 10:03 538次阅读

    智能规模超通用,大模型对智能提出高要求

    电子发烧友网报道(文/李弯弯)是设备通过处理数据,实现特定结果输出的计算能力,常用FLOPS作为计量单位。FLOPS是Floating-point Operations Per Second
    的头像 发表于 02-06 00:08 6067次阅读

    大茉莉X16-P,5800M大称王称霸

    Rykj365
    发布于 :2024年01月25日 14:54:52

    模型时代必备存储之HBM进入汽车领域

    模型时代AI芯片必备HBM内存已是业内共识,存储带宽也成为AI芯片仅次于的第二关健指标,甚至某些场合超越
    发表于 12-12 10:38 783次阅读
    大<b class='flag-5'>模型</b>时代必备<b class='flag-5'>存储</b>之HBM进入汽车领域