0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

固态锂硫电池循环稳定性卓越,哥伦比亚与DGIST团队揭示正极极性绝缘载体关键作用

清新电源 来源:清新电源 2024-11-13 10:36 次阅读

研究简介

长期以来,固态锂硫电池的研究者们一直关注于提升硫正极载体材料的导电性,但哥伦比亚大学Yuan Yang(杨远)教授团队和大邱庆北科学技术院Jong-Sung Yu(유종성)教授团队发现具有更低导电性和更高极性的载体材料反而更有利于硫正极的循环稳定性。这一颠覆传统认知的研究成果以“Enhanced Cycling Stability of All-Solid-State Lithium-Sulfur Battery through Nonconductive Polar Hosts”为题发表在期刊Nano Letters上。Tianwei Jin(金天威)为本文第一作者。

研究概述

锂硫电池具有极高的理论能量密度和低廉的成本,但是硫正极在循环中电子电导率低、体积变化率大、放电过程中的中间产物多硫化物溶于电解液(即穿梭效应)等问题制约了该电池体系的发展。起初研究者们将硫单质填充于多孔碳载体中以增强其电子电导,随后人们指出氧化物等极性载体材料由于其与多硫化物的良好键合能够抑制穿梭效应,但穿梭效应仍没能得到完全解决。 随着硫化物固态电解质的逐渐成熟,固态锂硫电池逐渐成为锂硫电池领域中的研究热点。由于其不再存在穿梭效应,研究者们致力于研发不同的多孔碳载体以增强硫单质的电子电导,但这些正极材料普遍存在明显的容量衰减。哥伦比亚大学Yuan Yang教授团队和大邱庆北科学技术院Jong-Sung Yu教授团队发现该衰减来源于1.碳载体诱导其相邻固态电解质分解(ACS Energy Letters 2019, 4 (10), 2418-2427)和2.碳载体由于其低极性而与S/Li2S没有足够键合,导致硫在体积变化的过程中与载体失接触(Nano Letters 2013, 13 (3), 1265-1270)。

1aa375fe-9065-11ef-a511-92fbcf53809c.png

图1. 固态锂硫电池正极充放电示意图。当使用碳载体时,硫与载体存在失接触问题,且载体周围的电解质会加速分解,因而会导致容量衰减;当使用二氧化硅载体时,二氧化硅与S/Li2S存在键合,且其电子绝缘性使其与电解质兼容,因而极大减缓了容量衰减。

为了解决这一问题,两团队联合将绝缘且具有极性的二氧化硅多孔载体应用到固态锂硫电池的正极材料中,成功地将硫正极的循环稳定性提升至室温C/5充放电500次后仍具有1446 mAh/g的比容量,且具有良好的倍率性能。基于优异的电化学性能,研究团队颠覆传统观念地提出固态锂硫电池正极载体设计需要满足的两点条件:1.载体需要有适度的电子电导以同时满足电解质稳定性和倍率性能,而不是一味追求高电导;2.载体需要具有一定的极性以与Li2S成键,以避免活性材料的失接触,而这一点在过去的固态锂硫电池工作中往往被忽略。该发现对于固态锂硫电池的发展具有重要的指导意义。

图文导读

1acb8b48-9065-11ef-a511-92fbcf53809c.png

图2. 二氧化硅载体(platelet ordered mesoporous silica, pOMS)和碳载体(platelet ordered mesoporous carbon, pOMC)的物理与化学性质. (a-d) pOMC/S70的(a)SEM图像, (b)TEM图像, (c,d)对应的(c)C和(d)S的HAADF-STEM EDS图. (e-h) pOMS/S70的(e)SEM图像, (f)TEM图像, (g,h)对应的(c)Si和(d)S的HAADF-STEM EDS图. (i) S, pOMC, pOMC/S70, pOMS和pOMS/S70的XRD图谱. (j) pOMC, pOMC/S70, pOMS和pOMS/S70的氮气吸附/脱附等温线. (k, l) pOMC/S70和pOMS/S70的高分辨率S 2p XPS谱图, 单质硫作为对照. (m) SiO2-Li2S和C-Li2S界面结构的DFT计算。

图2表明所合成的二氧化硅载体(platelet ordered mesoporous silica, pOMS)和以pOMS为模版所制备的碳载体(platelet ordered mesoporous carbon, pOMC)具有相似的结构。两者均为六边形纳米薄片,纳米孔贯穿薄片厚度方向且孔间距约为9.8 nm,硫均匀地填充于这些纳米孔中,这样硫中的电子和离子的传输距离为纳米尺度,因此即使硫单质的电导不甚理想,充放电时的过电位也不会过于严重。在相似的结构性质之外,两个载体材料具有两点不同,一是电子电导,二是与S/Li2S的键合。过往的研究表明二氧化硅与Li2S有吸附作用而碳没有,研究团队进一步用XPS表明其所合成的二氧化硅载体与S也有显著的键合。

1b10d3c4-9065-11ef-a511-92fbcf53809c.png

图3. 分别使用碳载体(pOMC)和二氧化硅载体(pOMS)的全固态锂硫电池的电化学性能。(a) 硫负载量为1 mg/cm²的Li-In|LPSC|pOMS/S70和Li-In|LPSC|pOMC/S70电池的循环性能以及(b, c)它们对应的电压曲线图. (d) 经过150次循环后Li-In|LPSC|pOMS/S70电池的倍率性能(完整的循环性能见图S6)。(e) 硫负载量为1.7 mg/cm²的Li-In|LPSC|pOMS/S70电池的循环性能。所有电池以C/20进行首圈充放电, 随后以C/10或C/5进行后续循环, 并以C/20的截止电流进行恒电压步骤,1C基于所有电池的第一次充放电中的平均比容量定义为1000 mA/g,所有电池均在室温下进行循环。 这两点区别使二氧化硅载体和碳载体在全固态锂硫电池中展现出完全不同的电化学循环性能。pOMC/S70 (载体与硫的质量比为3:7)在首圈放电中放出1430 mAh/g 的比容量,但是只有1082 mAh/g (75.7%)的容量可被充回,并且在50圈的C/10充放电后放电比容量仅余649 mAh/g。这是由于碳载体导致了活性材料失接触和电解质分解导致了离子电导恶化。 与此相对的是,pOMS/S70 在首圈放电中放出 1087 mAh/g 的比容量,其中有 1034 mAh/g(95.1%)可被充回。在经历明显的活化过程之后,放电比容量在40圈之后升至1318 mAh/g,并在500圈的C/5室温充放电之后维持在1446 mAh/g,这是迄今报道文章中最佳的室温循环容量和稳定性之一。此外,pOMS/S70展现出良好的倍率性能和高面载性能,进一步说明硫正极的电子电导可以通过减小硫的尺寸和选择合适的碳导电剂来实现,而不仅是依赖于高电导载体。 作者同时诚实地指出,尽管pOMS/S70具有比pOMC/S70更好的循环稳定性,但其在充放电过程中具有更大的过电位(0.59 V vs. 0.36 V in the initial cycle, Fig. 3b,c)。这表明载体需要有合适的电子电导以同时满足电池倍率性能和循环稳定性,这同时也有利于实现更高的硫面载量。

1b37a62a-9065-11ef-a511-92fbcf53809c.png

图4. pOMC/S70和pOMS/S70正极的形貌和化学演变. (a) pOMC/S70正极在循环前和循环10次后的SEM图像. (b) pOMS/S70正极在循环前和循环10次后的SEM图像. (c) pOMC/S70正极在循环10次后的SEM图像及对应的Cl, S, 和P元素的EDS图. (d) pOMC/S70正极在循环10次后的FIB-SEM图像及对应的Cl, S, 和P元素的EDS图. (e) pOMS/S70正极在循环10次后的SEM图像及对应的Cl, S, 和P元素的EDS图. 所有循环后的正极均于3 V vs. Li/Li+的条件下取出进行表征, 硫负载量为1 mg/cm², 初始循环以C/20进行, 随后的九次循环以C/10进行, 循环均在室温下进行。

1b673b2e-9065-11ef-a511-92fbcf53809c.png

图5. pOMC/S70和pOMS/S70正极的XPS谱图. pOMC/S70正极在循环前和循环10次后的(a) S 2p, (b) P 2p, 和 (c) Cl 2p XPS谱图。pOMS/S70正极在循环前和循环10次后的(d) S 2p, (e) P 2p, 和 (f) Cl 2p XPS谱图。所有循环后的正极均于3 V vs. Li/Li+的条件下取出进行表征, 硫负载量为1 mg/cm², 初始循环以C/20进行, 随后的九次循环以C/10进行, 循环均在室温下进行。

循环后的正极表征结果验证了作者的假设。pOMC/S70正极在循环后出现了巨大的形貌变化,而该变化来自于固态电解质的分解;而pOMS/S70正极在循环后的形貌和化学性质基本保持不变,得益于其对固态电解质分解的抑制。此外,pOMC/S70正极在循环后有较强的Li2S信号,很可能来源于碳载体与S/Li2S的弱键合所导致的Li2S失接触,这也对应了其75.7%的低首圈可逆性;而pOMS/S70正极在循环后的Li2S信号很弱,得益于二氧化硅载体与S/Li2S的强键合,这也对应了其95.1%的高首圈可逆性。

总结与展望

该工作颠覆传统地提出了一种全固态锂硫电池中硫载体的新设计理念,即低导电性可以抑制邻近电解质的分解,而高极性可以抑制活性材料失接触的问题,从而增强全固态锂硫电池的循环性能。硫的充分的电子传导可以通过减小硫的尺寸和选择适当的碳导电剂来实现,而不是仅仅依赖于高电导载体。作为示例,作者展示了一种与S和Li2S有强结合的二氧化硅载体,该载体使硫展现于远优于碳载体的循环性能,并通过FIB-SEM-EDS和XPS分析证实了其设想。本研究揭示了低电导、高极性的载体对全固态锂硫电池在减少电解质分解、稳定循环性能和达到满意的倍率性能上具有巨大的作用。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 绝缘
    +关注

    关注

    1

    文章

    425

    浏览量

    21799
  • 锂硫电池
    +关注

    关注

    7

    文章

    96

    浏览量

    13585

原文标题:固态锂硫电池极佳循环稳定性!哥伦比亚杨远、DGIST Jong-Sung Yu指出正极极性绝缘载体的关键作用

文章出处:【微信号:清新电源,微信公众号:清新电源】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    物联网行业中的常用电池方案_电池

    1.电池简介 酰氯(Li/SOCl2)电池
    的头像 发表于 09-25 11:22 304次阅读
    物联网行业中的常用<b class='flag-5'>电池</b>方案_<b class='flag-5'>锂</b><b class='flag-5'>亚</b><b class='flag-5'>电池</b>

    VCO的频率稳定性是什么

    VCO(Voltage-Controlled Oscillator,压控振荡器)的频率稳定性是一个关键的性能指标,它描述了VCO输出频率对输入电压变化的敏感程度及在长时间或不同环境条件下保持频率稳定
    的头像 发表于 08-20 16:08 645次阅读

    工控机在现代工业中的关键作用

    随着科技的飞速发展,工业自动化已经成为推动现代工业前进的重要动力。在这一进程中,工控机(Industrial Personal Computer,简称IPC)凭借其卓越的性能和稳定性,发挥着不可替代的作用。本文将详细探讨工控机的
    的头像 发表于 06-28 18:03 860次阅读

    晶振频率稳定性关键指标与影响因素

    晶振频率稳定性是评价晶振质量的一个重要指标,它指的是晶振频率随外界条件变化的能力。在实际应用中,我们需要关注以下几个方面对晶振频率稳定性的影响:1. 工作温度:晶体的物理特性会随着温度的变化而变化
    发表于 05-17 15:34

    将废正极材料升级为高稳定性电池的双功能催化剂!

    (Li-S)电池是由一系列逐步转换氧化还原反应充放电的,由于其低成本、高比容量和环境可持续性,在其他电化学器件中脱颖而出,然而,多硫化物(LiPSs)的缓慢反应动力学、大体积波动
    的头像 发表于 05-11 10:41 687次阅读
    将废<b class='flag-5'>正极</b>材料升级为高<b class='flag-5'>稳定性</b><b class='flag-5'>锂</b><b class='flag-5'>硫</b><b class='flag-5'>电池</b>的双功能催化剂!

    运放稳定性的判断原理的补偿原理?

    有反馈的运放是从输出端到输入端的反馈支路,但是在电路上输入和输出也是通过反馈支路直接电气连接的,为什么不考虑输入经反馈支路到输出端的电路作用? 由反馈之路的数学关系可得知反馈运放的稳定性数学关系,1
    发表于 05-06 22:09

    M8_8pin接头在电子设备中的关键作用

      德索工程师说道在电子设备领域,连接器的选择与应用对于设备的整体性能与稳定性具有至关重要的影响。其中,M8_8pin接头因其出色的设计、坚固的结构和优越的电气性能,在电子设备中发挥着关键作用。本文将从多个方面详细阐述M8_8pin接头在电子设备中的
    的头像 发表于 04-22 17:34 457次阅读
    M8_8pin接头在电子设备中的<b class='flag-5'>关键作用</b>

    电池怎么做绝缘处理?电池模组绝缘片起到什么作用

    电池绝缘处理是确保其安全运行的关键步骤,特别是在电动汽车和大型储能系统中,绝缘处理可以有效防止电芯之间的短路、保护用户免受电击危险,以及确保电池
    的头像 发表于 04-12 17:37 2823次阅读

    电池电池的区别

    电池电池都是锂离子电池的一种,它们在结构和工作原理上有很多相似之处,但在性能和应用方面
    的头像 发表于 01-16 10:30 2126次阅读

    电池的应用范围有哪些

    电池具有高能量密度、低自放电率等优点,广泛应用于各种便携式电子设备,此外,电池还在电动汽
    的头像 发表于 01-16 10:23 792次阅读

    电池的优缺点有哪些

    酰氯(Li/SOCl2)电池(简称:电池
    的头像 发表于 01-16 10:11 2995次阅读

    磷酸铁锂电池和三元锂电池稳定性哪个更好?

    。 首先,让我们先了解一下磷酸铁锂电池的热稳定性。磷酸铁锂电池是一种锂离子电池,其正极材料是磷酸铁
    的头像 发表于 01-09 16:31 1388次阅读

    一种有机-无机非对称固态电解质,实现长循环稳定的高压锂电池

    通过非对称有机-无机复合固态电解质的协同效应,改善了不同阴极(LiFePO4和LiNi0.8Mn0.1Co0.1O2)/锂电池循环稳定性,显著拓宽了电化学
    的头像 发表于 12-10 09:23 1656次阅读
    一种有机-无机非对称<b class='flag-5'>固态</b>电解质,实现长<b class='flag-5'>循环</b><b class='flag-5'>稳定</b>的高压锂<b class='flag-5'>电池</b>

    关于电池最新研究成果分享

    电池优势突出,具有高比能潜力,被认为是极具发展前景的新一代电池,但其放电产物绝缘性、不稳定S
    的头像 发表于 12-01 10:41 931次阅读

    比亚迪与哥伦比亚经销商MOTORYSA携8款新能源车型亮相

    近日,哥伦比亚首都波哥大汽车展会Salón del Automóvil 2023盛大开幕,比亚迪与哥伦比亚经销商MOTORYSA携8款新能源车型亮相,让用户近距离感受绿色科技魅力。
    的头像 发表于 11-28 10:10 1066次阅读