0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

科学家将拉曼光谱的测量速率提高100倍

jf_64961214 来源:jf_64961214 作者:jf_64961214 2024-11-15 06:24 次阅读

专门设计和制造的拉曼光谱仪的图像,其性能比任何其他系统高出100倍。

东京大学光子科学与技术研究所的研究人员 Takuma Nakamura、Kazuki Hashimoto 和 Takuro Ideguchi 将拉曼光谱的测量速率提高了100倍,拉曼光谱是一种测量分子 “振动指纹”以识别分子的常用技术。

由于测量速率一直是一个主要的限制因素,这一改进有助于在许多依赖于识别分子和细胞的领域(如生物医学诊断和材料分析)取得进展。研究结果发表在《超快科学》(Ultrafast Science)杂志上。

识别各类分子和细胞是基础科学和应用科学的关键步骤。为此,拉曼光谱是一种广泛使用的测量技术。当激光束投射到分子上时,光线会与分子键的振动和旋转相互作用,从而改变散射光的频率。由此测得的散射光谱就是分子独特的 “振动指纹”。

这项研究的主要研究者 Ideguchi 说:“测量是科学的基础,因此,我们努力实现测量系统的比较高性能。特别是,我们致力于突破光学测量的极限。”

由于拉曼光谱是一种广泛使用的测量技术,因此人们一直在尝试改进它。其主要限制因素之一是测量速率,使其无法 “跟上”某些化学和物理反应的变化速度。研究小组开始从零开始建立一个系统,以提高测量速率。

Ideguchi 说:"这个想法我已经考虑了十多年,但一直未能启动这个项目。正是我们几年前开发的新型比较好激光系统,才最终使项目取得进展成为可能"。

研究人员利用自身在光学和光子学方面的专业知识,将三种成分结合在一起:相干拉曼光谱(拉曼光谱的一种,与传统的自发拉曼光谱相比,它能产生更强的信号)、专门设计的超短脉冲激光器以及使用光纤的时间拉伸技术。

结果,他们实现了50MS谱/秒(兆谱/秒)的测量速度,与迄今为止最快的 50 kSpectra/秒(千谱/秒)测量速度相比,提高了100倍。Ideguchi 描述了这一改进的广泛潜力。

“我们的目标是将我们的光谱仪应用于显微镜,通过拉曼散射光谱捕捉二维或三维图像。此外,我们还设想通过将这项技术与微流体技术相结合,将其应用于流式细胞仪。这些系统将能够对细胞或组织中的生物分子进行高通量、无标记的化学成像和光谱分析。

审核编辑 黄宇

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 拉曼光谱
    +关注

    关注

    0

    文章

    83

    浏览量

    2719
收藏 人收藏

    评论

    相关推荐

    太赫兹光谱

    图 1:显示不同光谱技术对应的电磁波谱。 光谱通常在可见光 (532 nm) 或近红外光 (785 nm) 中使用,而红外吸收光谱用于
    的头像 发表于 09-26 10:02 230次阅读
    太赫兹<b class='flag-5'>拉</b><b class='flag-5'>曼</b><b class='flag-5'>光谱</b>简

    紫外光谱在微晶硅薄膜结晶度分析中的优势

    硅薄膜的结晶度(晶体结构所占的比例)对光伏电池性能至关重要。由于大多数硅薄膜表征信号会被衬底信号掩盖,因此难以确定其结晶度。光谱、椭偏光谱、透射电子显微镜(TEM)等技术都常被用于
    的头像 发表于 09-10 08:06 238次阅读
    紫外<b class='flag-5'>拉</b><b class='flag-5'>曼</b><b class='flag-5'>光谱</b>在微晶硅薄膜结晶度分析中的优势

    光谱的原理及其应用

    一、光谱的原理 光谱(Raman spectra)是一种散射
    的头像 发表于 08-26 06:22 244次阅读

    精准捕捉信号——时间门控光谱系统实验结果深度解析

    在上篇的文章(详见文末目录:闪光科技推出高性能时间门控光谱系统,为科学研究注入新动力!),一文中,我们详细介绍了时间门控
    的头像 发表于 08-13 10:38 293次阅读
    精准捕捉<b class='flag-5'>拉</b><b class='flag-5'>曼</b>信号——时间门控<b class='flag-5'>拉</b><b class='flag-5'>曼</b><b class='flag-5'>光谱</b>系统实验结果深度解析

    光谱仪原理及应用

    一、光谱仪的原理 光谱仪的原理是基于印度科学家
    的头像 发表于 07-01 06:28 565次阅读

    美能晶化率测试仪:光谱成像技术在HJT工艺中的应用与优化

    工艺参数硅薄膜晶化率,提高电池效率和钝化效果。光谱成像对提高成像质量和速度的影响
    的头像 发表于 06-29 08:33 281次阅读
    美能晶化率测试仪:<b class='flag-5'>拉</b><b class='flag-5'>曼</b><b class='flag-5'>光谱</b>成像技术在HJT工艺中的应用与优化

    时间门控光谱的创新驱动力——SPAD的突破与应用

    ◆◆◆◆时间门控光谱的创新驱动力SPAD的突破与应用◆◆◆◆光谱技术是一种基于光与物质分
    的头像 发表于 06-19 08:16 408次阅读
    时间门控<b class='flag-5'>拉</b><b class='flag-5'>曼</b><b class='flag-5'>光谱</b>的创新驱动力——SPAD的突破与应用

    探索光谱的奇妙世界:从原理到应用

    光谱是一种非常强大的材料分析工具,可用于探索研究碳质和无机材料的特征,提供其物相、功能和缺陷的有用信息等。此外,表面增强
    的头像 发表于 06-12 17:08 452次阅读
    探索<b class='flag-5'>拉</b><b class='flag-5'>曼</b><b class='flag-5'>光谱</b>的奇妙世界:从原理到应用

    可实现较高效率的单分子检测的数字胶体增强光谱

    该研究针对表面增强光谱领域内定量的挑战,系统阐述了基于数字胶体增强光谱(dCERS)的定
    的头像 发表于 04-23 09:07 537次阅读
    可实现较高效率的单分子检测的数字胶体增强<b class='flag-5'>拉</b><b class='flag-5'>曼</b><b class='flag-5'>光谱</b>

    用于单分子无标记定量检测的数字胶体增强光谱技术

    光谱是一种指纹式的、具有分子结构特异性的非弹性散射光谱。通过表面增强
    的头像 发表于 04-22 14:25 531次阅读
    用于单分子无标记定量检测的数字胶体增强<b class='flag-5'>拉</b><b class='flag-5'>曼</b><b class='flag-5'>光谱</b>技术

    一种用于化学和生物材料识别的便携式光谱解决方案

    基于扫频光源的紧凑型光谱系统:美国麻省理工学院(MIT)和韩国科学技术院(KAIST)的研究人员开发了一种用于化学和生物材料识别的便携式
    的头像 发表于 04-16 10:35 493次阅读
    一种用于化学和生物材料识别的便携式<b class='flag-5'>拉</b><b class='flag-5'>曼</b><b class='flag-5'>光谱</b>解决方案

    一文解析散射和光谱

    光谱是一种功能强大且用途广泛的分析技术,用于研究分子和材料样品。该技术基于光的非弹性散射,也称为散射,可以识别和定量样品中的化学键。
    的头像 发表于 03-29 11:36 975次阅读
    一文解析<b class='flag-5'>拉</b><b class='flag-5'>曼</b>散射和<b class='flag-5'>光谱</b>学

    先进的光谱技术

    图1:药物乳液的共焦图像。油(绿色)、活性药物成分(蓝色)和硅杂质(红色)的化学分布如图所示 由于正常散射产生的信号非常小,研究人员发现了几种机制,通过
    的头像 发表于 01-15 06:35 322次阅读
    先进的<b class='flag-5'>拉</b><b class='flag-5'>曼</b><b class='flag-5'>光谱</b>技术

    光谱装置的布局

    图1:光谱装置。 实际上,每个装置都包括一个激发样品的激光器和一个收集发射信号的探测器。额外的光学器件集成到系统中,以聚焦光束并优化
    的头像 发表于 01-10 06:35 363次阅读
    <b class='flag-5'>拉</b><b class='flag-5'>曼</b><b class='flag-5'>光谱</b>装置的布局

    光谱-医学和生命科学研究的理想工具

    精确、易与其他测量方法结合和高度自动化等优点。光谱或将成为医学和生命科学研究的理想工具。 由于使用可见光激光会导致荧光效应的高强度干扰,
    的头像 发表于 01-02 06:37 539次阅读
    <b class='flag-5'>拉</b><b class='flag-5'>曼</b><b class='flag-5'>光谱</b>-医学和生命<b class='flag-5'>科学</b>研究的理想工具