0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

CPU推理:AI算力配置新范式

阿丘科技 2024-11-21 01:03 次阅读
613ef124-a761-11ef-8084-92fbcf53809c.png

在当前的人工智能领域,尤其是涉及到深度学习的推理阶段,行业普遍认为GPU是唯一的选择。然而,GPU的成本相对较高,且对于某些特定的应用场景,其高昂的价格和较高的能耗成为了一大负担。

相比之下,CPU作为一种性价比极高的推理硬件,逐渐进入了人们的视野,尤其是在对结果准确度有较高要求且需要考虑成本效益的行业中,如制造业、图像处理与分析等。经过数年的内部研究,阿丘科技工业AI视觉算法平台软件AIDI已经成功验证了CPU推理的可行性,为行业提供了新的解决方案。

具体应用场景01

旧产线改造

许多制造企业的生产线启动时间较早,初期采用的传统算法并不过多依赖于GPU资源。随着时间的发展,这些产线的主板可能无法支持新增的GPU、NPU、TPU等加速卡。

在这种情况下,如果企业希望在其生产线上添加AI检测功能,全面更换工控机会导致成本激增,并延长上线周期。通过使用AIDI提供的CPU推理模式,企业可以迅速实现AI检测功能的上线,同时避免了高昂的硬件升级费用。

相关词语解释:

CPU(中央处理器,Central Processing Unit)

CPU是计算机的主要处理单元,负责执行系统中的大部分基本指令集,包括算术逻辑运算、控制单元的功能以及数据的移动等。它通常设计为能够高效地处理广泛的任务,从运行操作系统到执行应用程序的各种任务。

GPU(图形处理器,Graphics Processing Unit)

GPU最初是为加速计算机图形渲染而设计的处理器,但现在其应用范围已经远远超出了图形处理领域。GPU拥有大量的核心,能够并行处理大量数据,这使得它们在图像和视频处理、深度学习、科学计算等领域非常有用。

NPU(神经网络处理器,Neural Network Processing Unit)

NPU是一种专门为处理机器学习算法而设计的微处理器,尤其是针对深度学习任务。NPU优化了对向量和矩阵运算的支持,这些运算是神经网络训练和推理过程中的基础。

TPU(张量处理单元,Tensor Processing Unit)

TPU是由谷歌开发的一种定制ASIC(专用集成电路),专门用于加速机器学习工作负载,特别是针对使用TensorFlow框架的应用程序。TPU能够高效地执行大规模的矩阵运算,这对于训练和推断阶段的深度学习模型至关重要。

02

轻量型项目

对于一些新的项目,尤其是那些算力需求较小的场景(如图像小于500万像素,仅需进行图像分类或单图推理,且可接受100毫秒的延迟),使用单个GPU卡往往无法达到满负荷运行的状态,从而造成资源浪费。

这类项目非常适合采用CPU进行推理,训练阶段则可以利用GPU工控机或云端资源。这种方法不仅能够显著降低硬件采购成本,还能确保项目的顺利推进。

03

旧产线改造的具体情形

如下图所示,通过传统算法进行项目的测量与检测,硬件配置主要为CPU+内存+主板。

61635b2c-a761-11ef-8084-92fbcf53809c.png

图:旧产线

目前,旧产线改造通常有以下两种情形。

情形一:硬件配置基本不变,即CPU+内存+主板,通过传统算法做测量,而利用AI算法做外观检测。

616ab3fe-a761-11ef-8084-92fbcf53809c.png

图:情形一

情形二:硬件配置基本不变,即CPU+内存+主板,通过传统算法做测量与外观检测,而利用AI算法做缺陷复判。

616e662a-a761-11ef-8084-92fbcf53809c.png

图:情形二AIDI-CPU推理的优势01

推理速度比肩GTX1060,500万图像像素级推理仅需50ms

AIDI的CPU推理在速度方面表现出色,其底层采用DefectNet网络+Aqinfer推理引擎的创新模式。

617a8f4a-a761-11ef-8084-92fbcf53809c.png

DefectNet网络专门针对工业数据的特性而设计,具备轻量且检测能力强的特点。Aqinfer自研推理引擎则针对工业场景中图像分辨率高、目标小的特点,在原本就较高的推理速度基础上,进一步优化计算速度。

02

节省硬件成本,降低耗能风险

CPU在市场上供应充足,价格相对更为亲民,相较于一些高性能GPU,CPU的获取成本更低。对于企业来说,尤其是预算有限的中小企业,选择CPU推理可以在不牺牲太多性能的前提下,大幅降低硬件采购成本。

以一家小型服装加工厂为例,在引入AI检测系统时,如果选择GPU方案,高昂的硬件成本可能使其望而却步;而采用CPU推理方案,仅需利用现有的工控机资源,就能实现基本的质量检测功能。

同时,GPU的高功耗不仅增加了企业的用电成本,还会导致设备硬件容易因过热等问题而损坏。相比之下,CPU的功耗较低,运行更加稳定,能够有效降低企业的能耗风险和设备维护成本。在长期运行过程中,这一优势将为企业节省大量的资金和人力投入。

03

快速验证,减少额外投资

利用CPU进行AI推理,企业可以充分挖掘既有平台的空闲算力,避免了为新的算力需求而进行大规模的额外投资。在项目的初期验证阶段,CPU推理能够快速搭建起一个低成本的测试环境,帮助企业快速验证AI算法的可行性和有效性。例如,视觉团队可以先在现有的服务器上利用CPU进行算法验证,根据验证结果再决定是否需要进一步投资更强大的GPU算力。

成功案例

在某胶体检测项目中,产品的检测项涵盖少胶、溢胶、断胶、漏胶等关键指标。老设备方案中,胶水识别采用的是传统算法,但在实际应用中,偶尔会出现定位不准的问题,这对产品质量产生了一定的影响。为了提高检测精度,降低过检率,企业决定引入AI检测方案。

61824dc0-a761-11ef-8084-92fbcf53809c.png

由于新增GPU需要对工控机配置进行复杂的修改,并且采购流程耗时较长,为了确保产线的正常运行,不耽误生产进度,项目团队最终选择了CPU推理方案。经过实际测试和验证,该方案能够直接上线,并且取得了令人满意的效果。

618cdeca-a761-11ef-8084-92fbcf53809c.png

在此次项目中,图像分辨率为1000W,客户要求的CT(Cycle Time,周期时间)为1000ms,而实际CT时间仅为500ms,单图推理时间更是缩短至100ms,完全满足了上线要求。这一案例充分证明了阿丘科技AIDI的CPU推理在实际工业场景中的可行性和有效性,为其他类似项目提供了宝贵的参考经验。

综上,CPU推理作为AI算力配置的新范式,在特定的应用场景中展现出了独特的优势。随着技术的不断发展和优化,相信阿丘科技AIDI的CPU推理将在更多领域得到广泛应用,为企业的智能化转型提供更加经济、高效的解决方案。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • cpu
    cpu
    +关注

    关注

    68

    文章

    10882

    浏览量

    212252
  • 人工智能
    +关注

    关注

    1792

    文章

    47445

    浏览量

    239043
  • AI算力
    +关注

    关注

    0

    文章

    73

    浏览量

    8759
收藏 人收藏

    评论

    相关推荐

    企业AI租赁模式的好处

    构建和维护一个高效、可扩展的AI基础设施,不仅需要巨额的初期投资,还涉及复杂的运维管理和持续的技术升级。而AI
    的头像 发表于 12-24 10:49 150次阅读

    企业AI租赁是什么

    企业AI租赁是指企业通过互联网向专业的提供商租用所需的计算资源,以满足其AI应用的需求。
    的头像 发表于 11-14 09:30 808次阅读

    AI推理CPU当道,Arm驱动高效引擎

    AI的训练和推理共同铸就了其无与伦比的处理能力。在AI训练方面,GPU因其出色的并行计算能力赢得了业界的青睐,成为了当前AI大模型最热门的芯片;而在
    的头像 发表于 11-13 14:34 2507次阅读
    <b class='flag-5'>AI</b><b class='flag-5'>推理</b><b class='flag-5'>CPU</b>当道,Arm驱动高效引擎

    AI时代的重要性及现状:平衡发展与优化配置的挑战

    AI时代,扮演着至关重要的角色。如果说数据是AI大模型的“燃料”,那么则是其强大的“动
    的头像 发表于 11-04 11:45 462次阅读

    GPU开发平台是什么

    随着AI技术的广泛应用,需求呈现出爆发式增长。AI租赁作为一种新兴的服务模式,正逐渐成为
    的头像 发表于 10-31 10:31 209次阅读

    【「芯片 | 高性能 CPU/GPU/NPU 微架构分析」阅读体验】--全书概览

    1章 从TOP500和MLPerf看芯片格局 1.1科学最前沿TOP500 1.2 AI
    发表于 10-15 22:08

    青云科技强化AI架构,升级产品与服务体系

    10月9日,青云科技正式揭晓了其升级版的产品与服务阵容、行业及场景定制化解决方案,以及全新的生态战略。该公司旨在通过AI平台、AI
    的头像 发表于 10-10 16:42 507次阅读

    名单公布!【书籍评测活动NO.43】 芯片 | 高性能 CPU/GPU/NPU 微架构分析

    社会资源和资本力量关注芯片的发展,希望我们的国家能够更独立自主地设计制造高性能芯片。 内容简介: 本书介绍了超级计算机
    发表于 09-02 10:09

    大模型时代的需求

    现在AI已进入大模型时代,各企业都争相部署大模型,但如何保证大模型的,以及相关的稳定性和性能,是一个极为重要的问题,带着这个极为重要的问题,我需要在此书中找到答案。
    发表于 08-20 09:04

    如何基于OrangePi AIpro开发AI推理应用

    香橙派AIpro开发板采用昇腾AI技术路线,接口丰富且具有强大的可扩展性,提供8/20TOPS澎湃,可广泛使用于AI边缘计算、深度视觉学习及视频流
    的头像 发表于 06-04 14:23 554次阅读
    如何基于OrangePi AIpro开发<b class='flag-5'>AI</b><b class='flag-5'>推理</b>应用

    中国移动发布基于飞腾CPU自主研发的赋能AI时代的新产品

    4月16日,在中国南京举办的 “2024 全球 6G 技术大会”上,中国移动发布了 基于飞腾 CPU 自主研发的赋能 AI 时代的新产品——“灵云” 无线通
    的头像 发表于 04-17 18:12 1449次阅读
    中国移动发布基于飞腾<b class='flag-5'>CPU</b>自主研发的赋能<b class='flag-5'>AI</b><b class='flag-5'>算</b><b class='flag-5'>力</b>时代的新产品

    AMD推出锐龙8000嵌入式处理器,AI高达39 T

    此款CPU选用4纳米制程、AMD基于“Zen 4”架构的CPU核心以及使用RDNA 3架构GPU和XDNA架构NPU,实现高达39TOPS的AI
    的头像 发表于 04-03 10:39 917次阅读

    256Tops!CSA1-N8S1684X服务器

    (基于BM1684X的高服务器)高AI处理器BM1684X搭载了BM1684AI
    的头像 发表于 03-23 08:02 1676次阅读
    256Tops<b class='flag-5'>算</b><b class='flag-5'>力</b>!CSA1-N8S1684X<b class='flag-5'>算</b><b class='flag-5'>力</b>服务器

    大茉莉X16-P,5800M大称王称霸

    Rykj365
    发布于 :2024年01月25日 14:54:52

    立足,聚焦AI!顺网科技全面走进AI时代

    “立足,聚焦AI”,顺网科技进军AI时代的号角已被吹响。 1月18日,顺网科技(300113.SZ)以“跃迁·向未来”为主题的战略升
    的头像 发表于 01-19 10:57 482次阅读
    立足<b class='flag-5'>算</b><b class='flag-5'>力</b>,聚焦<b class='flag-5'>AI</b>!顺网科技全面走进<b class='flag-5'>AI</b>智<b class='flag-5'>算</b>时代