0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

如何在低功耗MCU上实现人工智能和机器学习

Silicon Labs 来源: Silicon Labs 2024-12-17 16:06 次阅读

人工智能 (AI) 和机器学习 (ML) 的技术不仅正在快速发展,还逐渐被创新性地应用于低功耗的微控制器 (MCU) 中,从而实现边缘AI/ML的解决方案。这些嵌入式系统的核心组件如今能够支持 AI/ML 应用,凭借其成本效益、高能效以及可靠的性能,集成在可穿戴技术、智能家居设备和工业自动化等领域的效益尤为显著。具备AI优化功能的MCU和 TinyML的兴起(专注于在小型、低功耗设备上运行ML模型)体现了这一领域的进步。TinyML对于直接在设备上实现智能决策、支持实时处理和减少延迟至关重要,特别是在连接有限或无连接的环境中。

TinyML简介

TinyML是指在小型、低功耗设备上应用机器学习模型,尤其是在资源受限的MCU上优化运行。这使得边缘设备能够实现智能决策,支持实时处理并减少延迟。量化 (Quantization) 和Pruning等技术用于减小模型体积并提高推理速度。量化通过降低模型权重的精度,显著减少内存使用而几乎不影响准确性;Pruning则通过去除不重要的神经元,进一步减小模型规模并提升延迟性能。这些方法对在资源有限的设备上部署 ML模型至关重要。

主流框架与工具

PyTorch和TensorFlow Lite:PyTorch 是一种开源的机器学习库,广泛用于人工智能应用,也能部署在微控制器上。TensorFlow Lite for Microcontrollers (TFLM) 支持在资源受限的 MCU 上运行 TF Lite 模型,通过 Flatbuffer 转换减少模型体积并优化推理性能。

ARM的CMSIS-NN库:提供为 Cortex-M 处理器优化的神经网络内核,提升性能并减少内存占用,使 ARM 架构的 MCU 更易运行 ML 模型。

AI/ML硬件加速器:一些 MCU,例如Silicon Labs(芯科科技)的EFM32系列SoC和MCU配备了AI/ML专用硬件加速器,大幅提升了ML模型的运行效率。这些加速器通过并行化任务(如矩阵乘法、卷积和图处理)来实现更高性能,同时保持低功耗。此外,它们优化了内存访问模式,减少了数据传输开销,从而进一步节省能耗。

AI/ML实际应用

音频与视觉唤醒词:应用于智能音箱和安防摄像头,在识别到唤醒词或检测到运动时激活设备。

工业预测性维护:工厂设备上的传感器监控振动和温度等参数,利用TinyML模型检测异常并预测维护需求。

手势与活动识别:可穿戴设备利用加速度计和陀螺仪实时分析数据,用于健身追踪或医疗诊断。

农业环境监控:分析土壤湿度和天气条件,优化灌溉,提高作物产量。

健康监测:持续血糖监测设备和智能床垫传感器可提供实时健康数据,用于远程医疗和老年护理。

AI/ML开发流程

数据采集与预处理:使用传感器(如加速度计、麦克风、摄像头)采集原始数据,并进行清理、归一化等预处理。

模型训练与优化:在高性能设备上(如 GPU)使用 TensorFlow 或 PyTorch 训练模型。优化技术包括量化和Pruning。

模型转换与部署:将优化后的模型转换为 TensorFlow Lite 格式,并通过 芯科科技的Simplicity Studio开发环境将模型部署到MCU上。

推理与优化:在MCU 上运行推理任务,进一步测试和改进性能。

芯科科技的AI/ML解决方案

提供适用于 TinyML 的硬件与软件支持:

硬件:EFR32/EFM32(如 xG24、xG26、xG28)及 SiWx917 系列无线MCU,具有低功耗与高性能优势。

软件工具链:包括 TensorFlow Lite for Microcontrollers、Simplicity Studio、ML Toolkit 和第三方工具(如 SensiML、Edge Impulse)。

参考应用:提供 GitHub 库和示例代码,涵盖异常检测、图像分类、关键字识别等场景。

TinyML的优势

成本低:MCU价格亲民

绿色环保:能耗低

易于集成:便于嵌入现有环境

隐私与安全:数据本地处理,无需联网传输

实时处理:低延迟

自主可靠:在任何环境下都能稳定运行

结论

MCU 不再局限于简单任务,而是正成为 AI 的强大平台。通过探索 AI 优化 MCU,我们可以为智能电池供电设备开辟新的可能性。无论是智能家居设备还是工业传感器,AI 驱动的 MCU 正在重塑嵌入式系统的未来。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • mcu
    mcu
    +关注

    关注

    146

    文章

    17109

    浏览量

    350894
  • 人工智能
    +关注

    关注

    1791

    文章

    47137

    浏览量

    238113
  • 机器学习
    +关注

    关注

    66

    文章

    8401

    浏览量

    132534

原文标题:设计应用-在低功耗MCU上实现人工智能和机器学习

文章出处:【微信号:SiliconLabs,微信公众号:Silicon Labs】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    三款低功耗MCU实现应用产品的耐久续航力

    三款低功耗MCU实现应用产品的耐久续航力 低功耗MCU是趋势所在 低功耗可说是
    发表于 12-13 10:44

    嵌入式和人工智能究竟是什么关系?

    嵌入式和人工智能究竟是什么关系? 嵌入式系统是一种特殊的系统,它通常被嵌入到其他设备或机器中,以实现特定功能。嵌入式系统具有非常强的适应性和灵活性,能够根据用户需求进行定制化设计。它广泛应用于各种
    发表于 11-14 16:39

    人工智能机器学习和深度学习存在什么区别

    人工智能指的是在某种程度上显示出类似人类智能的设备。AI有很多技术,但其中一个很大的子集是机器学习——让算法从数据中学习
    发表于 10-24 17:22 2478次阅读
    <b class='flag-5'>人工智能</b>、<b class='flag-5'>机器</b><b class='flag-5'>学习</b>和深度<b class='flag-5'>学习</b>存在什么区别

    《AI for Science:人工智能驱动科学创新》第6章人AI与能源科学读后感

    、优化等方面的应用有了更清晰的认识。特别是书中提到的基于大数据和机器学习的能源管理系统,通过实时监测和分析能源数据,实现了能源的高效利用和智能化管理。 其次,第6章通过多个案例展示了
    发表于 10-14 09:27

    《AI for Science:人工智能驱动科学创新》第一章人工智能驱动的科学创新学习心得

    人工智能:科学研究的加速器 第一章清晰地阐述了人工智能作为科学研究工具的强大功能。通过机器学习、深度学习等先进技术,AI能够处理和分析海量
    发表于 10-14 09:12

    risc-v在人工智能图像处理应用前景分析

    人工智能推荐系统中强大的图形处理器(GPU)一争高下。其独特的设计使得该处理器在功耗受限的条件下仍能实现高性能的图像处理任务。 Ceremorphic公司 :该公司开发的分层学习处理
    发表于 09-28 11:00

    FPGA在人工智能中的应用有哪些?

    FPGA(现场可编程门阵列)在人工智能领域的应用非常广泛,主要体现在以下几个方面: 一、深度学习加速 训练和推理过程加速:FPGA可以用来加速深度学习的训练和推理过程。由于其高并行性和低延迟特性
    发表于 07-29 17:05

    MCU如何实现AI功能

    在讨论如何在微控制器单元(MCU实现AI功能时,我们需要认识到MCU通常具有较为有限的计算资源和内存空间,这与专为高性能计算设计的GPU
    的头像 发表于 07-19 11:51 871次阅读

    人工智能机器学习和深度学习是什么

    在科技日新月异的今天,人工智能(Artificial Intelligence, AI)、机器学习(Machine Learning, ML)和深度学习(Deep Learning,
    的头像 发表于 07-03 18:22 1246次阅读

    5G智能物联网课程之Aidlux下人工智能开发(SC171开发套件V2)

    ://t.elecfans.com/v/27221.html *附件:初学者完整学习流程实现手写数字识别案例_V2-20240506.pdf 人工智能 语音对话机器人案例 26分03秒
    发表于 05-10 16:46

    机器学习怎么进入人工智能

    人工智能已成为一个热门领域,涉及到多个行业和领域,例如语音识别、机器翻译、图像识别等。 在编程中进行人工智能的关键是使用机器学习算法,这是
    的头像 发表于 04-04 08:41 292次阅读

    5G智能物联网课程之Aidlux下人工智能开发(SC171开发套件V1)

    *附件:初学者完整学习流程实现手写数字识别案例.pdf 人工智能 语音对话机器人案例 26分03秒 https://t.elecfans.com/v/27185.html *附件:语
    发表于 04-01 10:40

    人工智能机器学习的顶级开发板有哪些?

    机器学习(ML)和人工智能(AI)不再局限于高端服务器或云平台。得益于集成电路(IC)和软件技术的新发展,在微型控制器和微型计算机上实现机器
    的头像 发表于 02-29 18:59 809次阅读
    <b class='flag-5'>人工智能</b>和<b class='flag-5'>机器</b><b class='flag-5'>学习</b>的顶级开发板有哪些?

    嵌入式人工智能的就业方向有哪些?

    联网ARM开发 NB-IoT开发及实战 七:python工程师,人工智能工程师 python语法基础 python核心编程 基于OpenCV的机器视觉开发 嵌入式人工智能渗入生活的方方面面,广泛应用
    发表于 02-26 10:17

    基于MCX微控制器的机器学习解决方案

    随着人工智能(AI)技术的发展,如何在MCU实现机器学习
    的头像 发表于 01-05 09:18 746次阅读
    基于MCX微控制器的<b class='flag-5'>机器</b><b class='flag-5'>学习</b>解决方案