0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

麻省理工研发出专用芯片,手机也能运行神经网络

dKBf_eetop_1 来源:未知 作者:李威 2018-03-06 10:22 次阅读

近期,麻省理工学院的研究人员开发了一种专用芯片,将神经网络计算的速度提高了 3 倍至 7 倍,同时将功耗降低了 95%。这将会使在智能手机上运行神经网络变得切实可行。

不管是语音识别还是面部识别,目前大多数人工智能系统的进步背后都来自于神经网络的功劳。人工神经网络,也就是通过大量简易“神经元”(信息处理器)连接而成的系统,能够通过分析大量训练数据学习如何完成不同的任务。

正是因为这样的结构,神经网络占用空间大,其计算过程中的耗能也相应非常大。因此,目前的神经网络很少能够被便携设备使用。目前所有使用神经网络的智能手机软件只能向网络服务器发送数据,通过接收服务器返回的数据完成计算。

不过,麻省理工学院(MIT)的研究人员开发了一种能够将神经网络计算速度提升 3-7 倍的专用芯片。除了提升计算性能,这类芯片还能够减少计算时 94-95% 的能耗。这种芯片使智能手机运用神经网络进行计算成为了可能,甚至能够扩展到在各式智能家居中的应用。

负责芯片开发的 Avishek Biswas 是这样解释的:“目前大部分的处理器芯片都有这样的模型:芯片的一部分是内存,另一部分是处理器。在计算的同时,数据相当于是在这两部分之间来回移位。”Biswas 是 MIT 电气工程和计算机学的一名研究生。

“由于这类机器学习算法需要非常多的计算量,数据的移位消耗了总能量中的绝大部分;但是算法中的计算本身其实能够被简化为‘点乘’这一种运算。我们因此产生了这种想法:能不能将这种‘点乘’运算直接在内存中执行,从而不需要将数据来回移动呢?”

Biswas 和他的指导教授,MIT 工程学院院长、Vannevar Bush 荣誉教授 Anantha Chandrakasan 在他们最新发表的论文中详细地描述了这种新型芯片。Biswas 在上周的国际固态电路会议(International Solid State Circuits Conference)中介绍了这篇论文。

重回抽象

人工神经网络一般被分成很多层,某一层中的一个处理器节点会从数个下层节点中获得数据,在计算后又将结果传送给上层中的数个节点。任意两个节点的连接都拥有不同的权重(weight),标志着下层节点传送的数据对于上层节点的计算有多大的影响。“训练”神经网络的过程其实就是调试并改进这些权重数据。

当某个节点获得下层节点传送的数据后,它会将每个数据乘以它的权重,然后将这些结果相加。这一运算过程——将相乘后的所有结果相加——就叫作“点乘”。如果点乘的结果超过了某个定值,这一结果将被传送给更上层的节点。上层节点也将会这一结果乘以连接权重,然后再和别的数据相加。

“神经网络”本身其实是对这一算法的一种“抽象化”:在计算机中,“节点”其实只是内存中的一系列权重数据。计算点乘的过程一般是从内存中读取一个权重和相关的计算数据,将这两个数据相乘并将结果存在内存的某个位置,然后重复这一过程,直到这一个节点的所有数据都被计算完毕。由于一个神经网络可能有上万(甚至上百万)的节点,在计算过程中其实要进行非常多的数据移动。

人工神经网络的计算过程其实是对大脑活动的一种电子化诠释。在大脑中,信号沿着多个神经元行进,在“突触”或者一束神经元之间的间隙中相遇。神经元的放电速率和穿过突触的电化学信号对应着人工神经网络中的数据值和权重。这样说来,MIT 研究人员此次研发的新型芯片通过对大脑活动的进一步复制、模仿,从而提升了人工神经网络的效率。

在这种新型芯片中,一个节点的输入数据被转化为不同的电压,并且这些电压将乘以权重大小进行放大或缩小。将相乘后的结果相加的过程能够通过组合这些电压得到实现。只有组合后的电压会被重新转换成数据,并在内存中进行存储,以进行下一步计算。

因此,这种芯片原型不需要将数据在处理器和内存中移动——它能同时计算 16 个节点的点乘结果。

不是“开”就是“关”

这个系统的一大特点是权重数值不是 1 就是-1。这就意味着它们能被实现为内存中的“电路开关”,也就是“关闭电路”与“打开电路”的区别。最新的理论研究表明,仅有两个权重值的人工神经网络与其它神经网络相比,其准确性仅会下降 1%-2%。

Biswas 与 Chandrakasan 教授的研究与这一理论结果相差不远。在实验中,他们在传统计算机中运行了一个全面的神经网络,同时在他们研发的芯片上运行了二元权重的神经网络。芯片提供的计算结果与计算机提供的结果一般仅相差 2%-3%。

“这项研究是针对深度学习应用中基于静态存储器(SRAM)内存模拟计算的一次非常有前景的实际演示。”IBM 人工智能研究院副总裁 Dario Gil 是这样评价的,“这项研究的结果对于在存储阵列中实现卷积网络提供了一种节能的实现方案。它一定能够为将来在物联网(Internet of Things, IoT)中采用更复杂的卷积神经网络进行图像和视频分类开辟可能性。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 神经网络
    +关注

    关注

    42

    文章

    4762

    浏览量

    100537

原文标题:MIT跨越性专用芯片:功耗降低95%,手机也能运行神经网络

文章出处:【微信号:eetop-1,微信公众号:EETOP】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    卷积神经网络与传统神经网络的比较

    神经网络称为全连接神经网络(Fully Connected Neural Networks,FCNs),其特点是每一层的每个神经元都与下一层的所有
    的头像 发表于 11-15 14:53 181次阅读

    神经网络专用硬件实现的方法和技术

    神经网络专用硬件实现是人工智能领域的一个重要研究方向,旨在通过设计专门的硬件来加速神经网络的训练和推理过程,提高计算效率和效比。以下将详细介绍神经
    的头像 发表于 07-15 10:47 965次阅读

    BP神经网络和卷积神经网络的关系

    BP神经网络(Backpropagation Neural Network)和卷积神经网络(Convolutional Neural Network,简称CNN)是两种在人工智能和机器学习领域
    的头像 发表于 07-10 15:24 1223次阅读

    BP神经网络和人工神经网络的区别

    BP神经网络和人工神经网络(Artificial Neural Networks,简称ANNs)之间的关系与区别,是神经网络领域中一个基础且重要的话题。本文将从定义、结构、算法、应用及未来发展等多个方面,详细阐述BP
    的头像 发表于 07-10 15:20 840次阅读

    rnn是递归神经网络还是循环神经网络

    RNN(Recurrent Neural Network)是循环神经网络,而非递归神经网络。循环神经网络是一种具有时间序列特性的神经网络,能够处理序列数据,具有记忆功能。以下是关于循环
    的头像 发表于 07-05 09:52 491次阅读

    递归神经网络是循环神经网络

    递归神经网络(Recurrent Neural Network,简称RNN)和循环神经网络(Recurrent Neural Network,简称RNN)实际上是同一个概念,只是不同的翻译方式
    的头像 发表于 07-04 14:54 637次阅读

    循环神经网络和卷积神经网络的区别

    循环神经网络(Recurrent Neural Network,RNN)和卷积神经网络(Convolutional Neural Network,CNN)是深度学习领域中两种非常重要的神经网络
    的头像 发表于 07-04 14:24 1121次阅读

    深度神经网络与基本神经网络的区别

    在探讨深度神经网络(Deep Neural Networks, DNNs)与基本神经网络(通常指传统神经网络或前向神经网络)的区别时,我们需要从多个维度进行深入分析。这些维度包括
    的头像 发表于 07-04 13:20 673次阅读

    人工智能神经网络芯片的介绍

    人工智能神经网络芯片是一类专门为深度学习和神经网络算法设计的处理器。它们具有高性能、低功耗、可扩展等特点,广泛应用于图像识别、语音识别、自然语言处理等领域。以下是关于人工智能神经网络
    的头像 发表于 07-04 09:33 584次阅读

    神经网络芯片与传统芯片的区别和联系

    引言 随着人工智能技术的快速发展,深度学习算法在图像识别、自然语言处理、语音识别等领域取得了显著的成果。然而,深度学习算法对计算资源的需求非常高,传统的计算芯片已经无法满足其需求。因此,神经网络芯片
    的头像 发表于 07-04 09:31 720次阅读

    神经网络芯片和普通芯片区别

    神经网络芯片和普通芯片的区别是一个复杂而深入的话题,涉及到计算机科学、电子工程、人工智能等多个领域。 定义 神经网络芯片(Neural Ne
    的头像 发表于 07-04 09:30 904次阅读

    反向传播神经网络和bp神经网络的区别

    神经网络在许多领域都有广泛的应用,如语音识别、图像识别、自然语言处理等。然而,BP神经网络存在一些问题,如容易陷入局部最优解、训练时间长、对初始权重敏感等。为了解决这些问题,研究者们提出了一些改进的BP
    的头像 发表于 07-03 11:00 677次阅读

    bp神经网络和卷积神经网络区别是什么

    BP神经网络(Backpropagation Neural Network)和卷积神经网络(Convolutional Neural Network,简称CNN)是两种不同类型的人工神经网络,它们在
    的头像 发表于 07-03 10:12 1022次阅读

    卷积神经网络和bp神经网络的区别

    卷积神经网络(Convolutional Neural Networks,简称CNN)和BP神经网络(Backpropagation Neural Networks,简称BPNN)是两种
    的头像 发表于 07-02 14:24 2914次阅读

    麻省理工学院开发出新的RFID标签防篡改技术

    虽然RFID标签广泛应用于各种场景,但安全性一直是其难以回避的问题。不法分子可以轻松复制或剥离这些电子标签,将赝品伪装成正品,欺骗消费者和认证系统。然而,麻省理工的新发明为这一问题提供了有效
    的头像 发表于 02-22 11:30 577次阅读
    <b class='flag-5'>麻省理工</b>学院开<b class='flag-5'>发出</b>新的RFID标签防篡改技术