0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

斯坦福大学鲍哲南/崔屹PNAS:高性能锂金属电池用单氟电解质

清新电源 来源:能源学人 2025-01-14 13:53 次阅读

背景介绍

锂金属电池因其高理论比容量(3860 mAh g-1)和低还原电位(-3.04 V)而备受关注。然而,锂金属电池面临库仑效率低和循环稳定性差的问题。如果要实现90%容量保持率下的1000次循环,平均库仑效率必须达到99.99%。目前,高度氟化的醚类电解质虽然能提高稳定性,但存在离子传输慢和环境问题。因此,开发低氟化程度但性能优异的电解质成为一个重要方向。

本文亮点

创新的分子设计策略:采用缩醛骨架作为主体结构,弱化溶剂化能力;端基碳上引入单氟取代,提高氧化稳定性;不需要使用高浓度电解质或高氟化稀释剂;通过分子结构调控实现性能平衡。 优异的综合性能表现:相比F5DEE,过电位降低约50%;在Li||Cu半电池中实现99.5%的CE,在高电流下相比F5DEE有更加优越的CE;在快充慢放条件下表现尤为突出;在无锂阳极LFP软包和高负载LFP硬币电池中都显示优异的容量保持率。 深入的机理研究:系统研究了SEI形成过程和组分;揭示了锂沉积形貌演变规律;定量分析了死锂形成机制;建立了分子结构-性能关系。

15360004-d071-11ef-9310-92fbcf53809c.png

图1. 分子设计

结果与讨论

作者首先解释分子设计的策略。从DEE出发进行骨架改造与氟化修饰,缩醛骨架可以有效弱化溶剂化能力,端基碳单氟取代提供适度的氧化稳定性。

1549cec2-d071-11ef-9310-92fbcf53809c.png

图2. 基础物性研究 离子传导性能 在使用隔膜条件下测试离子电导率,2M浓度时达到最优,并且在无隔膜条件下也验证了优异的本征导电性。在不同浓度(1.2-3M)下也系统研究了传输数。F2DEM的传输数(>0.4)与常规醚类电解质相当。 粘度与溶剂化研究 接下来,作者测量了不同电解质的动态粘度并证明相比F5DEE,F2DEM的粘度降低了。采用Kim等人开发的方法测定溶剂化自由能,以1M LiFSI/DEC为参考。结果显示DEE的溶剂化自由能为-8.05 kJ mol-1,而DEM由于缩醛结构显著降低至约14 kJ mol-1。F2DEM的氟化进一步弱化了溶剂化能力,达到与F5DEE相近的水平。拉曼光谱研究表明1.2M和2M F5DEE中观察到更多的接触离子对和聚集体,其次是2M F2DEM和2M DEM。这些结果与溶剂化自由能测量结果高度一致。 分子动力学与DFT计算 进行了基于分子动力学(MD)和DFT的计算研究,确定了Li+在各电解质中的最优结合构型。结果表明,高度氟化的1.2M F5DEE表现出局部聚集的溶剂化壳层,平均每个Li+约有2个FSI-,而2M F2DEM和2M DEM则形成了具有单个FSI-配位的接触离子对结构。优化后的结构显示F2DEM和DEM保持了gauche构型,导致单齿配位。这些结果表明,F2DEM的降低氟化程度可以在保持良好离子电导率的同时实现适度的溶剂化。

15669246-d071-11ef-9310-92fbcf53809c.png

图3. 电化学稳定性表征 对称电池性能研究 采用厚的锂片组装Li||Li对称电池,作者系统研究了电解质在不同电流密度下的性能。测试结果显示,2M LiFSI/F2DEM在所有电流密度下的过电位都比1.2M LiFSI/F5DEE低约50%。 库仑效率评估以及长期循环性能研究 作者首先采用Aurbach方法在Li||Cu半电池中评估了平均库仑效率。F2DEM实现了99.5%(4个电池平均)的高CE。在长期循环测试中, F2DEM在前5-50次循环的平均CE(99.4%)高于F5DEE和DEM(均为99.3%)。然而在这种温和条件下,F5DEE表现出比F2DEM更少的活化周期数(达到99%所需循环数)。 快充慢放条件测试 为进一步评估快充性能,作者采用更苛刻的条件(1 mA cm-2沉积,0.4 mA cm-2剥离,2 mAh cm-2容量)进行测试。在这种条件下,三种电解质表现出明显差异。F2DEM展现出优异的循环稳定性,250次循环中保持较高CE。并且F2DEM仅需不到10个循环即可达到99% CE,而F5DEE需要超过25个循环才能形成稳定SEI,DEM则始终无法实现高于99%的稳定循环。 氧化稳定性研究 考虑到F2DEM分子中改变的溶剂化环境和引入的吸电子氟原子,预期2M F2DEM具有改善的氧化稳定性。通过线性扫描伏安法(LSV)对三种电解质进行研究。在Al和Pt的系统里,F2DEM的氧化稳定性都超越了DEM,但因为单氟的原因,氧化稳定性没有超越F5DEE。

158f0550-d071-11ef-9310-92fbcf53809c.png

图4. 全电池性能 软包电池性能评估 使用Cu||LFP无锂阳极软包电池(工作电压2.5V至3.65V)评估2M LiFSI/F2DEM的实际应用性能。采用多种充放电倍率进行测试(1C = 200 mA或2 mA cm-2)。作者首先研究了C/2充电和C/5放电条件下的性能,F2DEM相比F5DEE在放电容量和CE方面都显示出显著提升。作者进一步研究了2C放电条件下的性能,因为通常采用慢充快放来改善锂形貌、减少锂枝晶形成。与F5DEE相比,F2DEM表现出更高的容量利用率和更慢的容量衰减。这种改善的容量保持率部分归因于其较低的过电位和更高的离子电导率,这与之前Li||Li对称电池的观察结果一致。在对称的C/2充放电条件下,2M LiFSI/F2DEM与两种参比电解质表现相似,这可能是因为在较慢条件下低过电位的优势不够明显。 扣式电池测试 作者使用20μm锂片负极和高负载3.5 mAh cm-2 LFP正极组装了Li||LFP硬币电池。额外的锂源允许作者研究Li||LFP电池的长期循环性能。作者采用多种充放电电流密度并使用截止电压3.8V。在0.75 mA cm-2充电和1.5 mA cm-2放电条件下,F2DEM相比F5DEE和DEM表现出更高的容量保持率。

15aaa47c-d071-11ef-9310-92fbcf53809c.png

图5. 界面分析 SEI层特性研究 首先通过电化学阻抗谱(EIS)研究了1.2M LiFSI/F5DEE、2M LiFSI/F2DEM和2M LiFSI/DEM形成的SEI电阻特性。在三种电解质中,F2DEM显示最低的初始SEI电阻,其次是DEM和F5DEE。通过5天的静置测试研究了SEI的钝化行为,F2DEM形成的SEI相比F5DEE表现出更好的钝化能力。 XPS深度剖析 作者比较发现在相同循环条件下,两种电解质没有显著的组分差异。都能识别出常见的SEI物种,如LiF、Li2O、SOx物种和Li2S。结果表明在两种电解质中,无机盐分解产物都占主导地位,这与多个其他高CE弱溶剂化电解质的报道一致。 SEI结构表征 作者使用聚焦离子束(FIB)切割20次循环后的SEI截面。观察发现F2DEM和F5DEE形成的残留SEI在厚度(约3μm)和孔隙率方面相似。进一步使用冷冻电镜检查了两种电解质的直接SEI厚度。有趣的是,尽管F2DEM由于SEI形成导致的容量损失更少,但观察到更厚的直接SEI。然而需要注意的是,直接SEI厚度与循环性能之间并无直接相关性。

15c7f31a-d071-11ef-9310-92fbcf53809c.png

图6. 死锂与形貌分析 死锂定量分析 通过滴定气相色谱法(TGC)定量分析死锂。在相同循环条件下,F5DEE产生的死锂量是F2DEM的两倍多;其次,从对称充放电(0.5 mA cm-2、0.5 mA cm-2、1 mAh cm-2)变为快充慢放(1 mA cm-2、0.4 mA cm-2、2 mAh cm-2)时,两种电解质中的死锂量都增加。 锂沉积形貌研究 为了追踪F2DEM中死锂容量损失减少的原因,作者研究了不同电流密度下的锂沉积形貌。为了确保最佳的形貌表征,仅沉积少量锂(0.1 mAh cm-2)。结果显示,在0.5 mA cm-2下F2DEM和F5DEE的锂形貌相似。然而,当电流密度提高到1 mA cm-2和2 mA cm-2时,两种电解质表现出明显区别。F2DEM中的锂沉积呈现更加块状,而F5DEE则形成更多须状锂形貌。这种锂沉积形貌的差异可以解释为什么F5DEE中形成更多死锂。 总结与展望

本工作设计开发了一种新型单氟化缩醛电解质(F2DEM),通过在缩醛骨架上引入单氟取代,实现了弱溶剂化能力与良好离子传导性的平衡。与现有高度氟化电解质相比,F2DEM表现出更低的过电位和更高的库仑效率,能促进形成稳定的SEI层和理想的块状锂沉积。该工作不仅开发出高性能电解质,更提供了通过分子设计平衡电解质性能的新思路。

文献链接 E. Zhang, Y. Chen, J. Holoubek, Z. Yu, W. Zhang, H. Lyu, I.R. Choi, S.C. Kim, C. Serrao, Y. Cui, Z. Bao, Monofluorinated acetal electrolyte for high-performance lithium metal batteries, Proc. Natl. Acad. Sci. U.S.A.122 (2) e2418623122. https://doi.org/10.1073/pnas.2418623122.

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 电池
    +关注

    关注

    84

    文章

    10659

    浏览量

    130633
  • 锂金属电池
    +关注

    关注

    0

    文章

    138

    浏览量

    4346

原文标题:斯坦福大学鲍哲南/崔屹PNAS:高性能锂金属电池用单氟电解质

文章出处:【微信号:清新电源,微信公众号:清新电源】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    相关推荐

    研究论文::乙烯碳酸酯助力聚合物电解质升级,提升高电压金属电池性能

    1、 导读 >>     该研究探讨了乙烯碳酸酯(VC)添加剂在聚丙烯酸酯(PEA)基固态聚合物电解质中的作用。结果表明,VC添加剂显著提升了电解质的锂离子电导率和迁移数,同时提高了金属
    的头像 发表于 01-15 10:49 160次阅读
    研究论文::乙烯碳酸酯助力聚合物<b class='flag-5'>电解质</b>升级,提升高电压<b class='flag-5'>锂</b><b class='flag-5'>金属</b><b class='flag-5'>电池</b><b class='flag-5'>性能</b>

    一种薄型层状固态电解质的设计策略

    研 究 背 景 固态电解质(SSE)代替有机电解液已被证明是克服高能量密度金属电池安全性问题
    的头像 发表于 12-31 11:21 164次阅读
    一种薄型层状固态<b class='flag-5'>电解质</b>的设计策略

    半互穿网络电解质用于高电压金属电池

    研究背景 基于高镍正极的金属电池的能量密度有望超过400 Wh kg-1,然而在高电压充电时,高镍正极在高度去化状态下,Ni4+的表面反应性显著增强,这会催化正极与
    的头像 发表于 12-23 09:38 297次阅读
    半互穿网络<b class='flag-5'>电解质</b>用于高电压<b class='flag-5'>锂</b><b class='flag-5'>金属</b><b class='flag-5'>电池</b>

    离子液体添加剂用于高压无负极金属电池

           研究背景 基于双(磺酰基)酰亚胺(LiFSI)的浓缩电解质已被提出作为无负极金属电池
    的头像 发表于 12-10 11:00 415次阅读
    离子液体添加剂用于高压无负极<b class='flag-5'>锂</b><b class='flag-5'>金属</b><b class='flag-5'>电池</b>

    通过电荷分离型共价有机框架实现对金属电池固态电解质界面的精准调控

    (-3.04 V vs SHE),被认为是次世代电池的最优选择。然而,金属负极的实际应用面临诸多挑战,其中最关键的问题是枝晶的生长和副反应的发生。这些问题不仅会导致
    的头像 发表于 11-27 10:02 371次阅读
    通过电荷分离型共价有机框架实现对<b class='flag-5'>锂</b><b class='flag-5'>金属</b><b class='flag-5'>电池</b>固态<b class='flag-5'>电解质</b>界面的精准调控

    全固态金属电池阳极夹层设计

    全固态金属电池(ASSLB)由于其高能量密度和高安全性而引起了人们的强烈兴趣,金属被认为是一种非常有前途的负极材料。然而,由于
    的头像 发表于 10-31 13:45 249次阅读
    全固态<b class='flag-5'>锂</b><b class='flag-5'>金属</b><b class='flag-5'>电池</b>的<b class='flag-5'>锂</b>阳极夹层设计

    固态电池中复合阳极上固体电解质界面的调控

    采用固体聚合物电解质(SPE)的固态金属电池(SSLMB)具有更高的安全性和能量密度,在下一代储能领域具有很大的应用前景。
    的头像 发表于 10-29 16:53 504次阅读
    固态<b class='flag-5'>电池</b>中复合<b class='flag-5'>锂</b>阳极上固体<b class='flag-5'>电解质</b>界面的调控

    无极电容器有电解质吗,无极电容器电解质怎么测

    无极电容器通常存在电解质电解质在无极电容器中起着重要作用,它可以增加电容器的电容量和稳定性。然而,电解质也可能带来一些问题,如漏电和寿命问题。
    的头像 发表于 10-01 16:45 440次阅读

    斯坦福大学研发全新AI辅助全息成像技术

    据最新消息,斯坦福大学的研究人员成功研制出全新AI辅助全息成像技术,其薄度、重量及质量均超过了当前方案,有望推动增强现实(AR)眼镜领域的发展。
    的头像 发表于 05-10 14:48 605次阅读

    铌酸调控固态电解质电场结构促进锂离子高效传输!

    聚合物基固态电解质得益于其易加工性,最有希望应用于下一代固态金属电池
    的头像 发表于 05-09 10:37 869次阅读
    铌酸<b class='flag-5'>锂</b>调控固态<b class='flag-5'>电解质</b>电场结构促进锂离子高效传输!

    最新Nature Energy开发新型稀释剂助推金属电池实用化!

    众所知周,通过调控电解液来稳定固体电解质间相(SEI),对于延长金属电池循环寿命至关重要。
    的头像 发表于 05-07 09:10 902次阅读
    最新Nature Energy开发新型稀释剂助推<b class='flag-5'>锂</b><b class='flag-5'>金属</b><b class='flag-5'>电池</b>实用化!

    固态金属电池的外部压力研究

    目前,使用易燃液体电解质的商用锂离子电池无法满足日益增长的高能量密度和安全性要求。无机固态电解质(SSE)取代传统的液体电解质有望在很大程
    的头像 发表于 04-26 09:02 1011次阅读
    固态<b class='flag-5'>锂</b><b class='flag-5'>金属</b><b class='flag-5'>电池</b>的外部压力研究

    斯坦福继Flash Attention V1和V2又推出Flash Decoding

    斯坦福大学此前提出的FlashAttention算法,能够在BERT-large训练中节省15%,将GPT训练速度提高2/3。
    的头像 发表于 03-13 15:23 810次阅读

    不同类型的电池电解质都是什么?

    电解质通过促进离子在充电时从阴极到阳极的移动以及在放电时反向的移动,充当使电池导电的催化剂。离子是失去或获得电子的带电原子,电池电解质由液体,胶凝和干燥形式的可溶性盐,酸或其他碱组成
    的头像 发表于 02-27 17:42 1695次阅读

    新型固体电解质材料可提高电池安全性和能量容量

    利物浦大学的研究人员公布了一种新型固体电解质材料,这种材料能够以与液体电解质相同的速度传导锂离子,这是一项可能重塑电池技术格局的重大突破。
    的头像 发表于 02-19 16:16 945次阅读