0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

高手经验:学电路原理,你得这么做

m3eY_edn_china 来源:未知 作者:李倩 2018-03-09 14:42 次阅读

本文作者frente nemo,frente nemo不仅学霸,简直奇人一枚,枯燥、复杂的电路于他“就像从身体里流淌出来一样”,对电路原理知识点的解读可谓深入浅出、妙语连珠,菜鸟们即便只get 到其一二也是不小的收获!

如果你是学电气专业的话,电路原理是最基础最重要的一门课。学不好它,后面的模电电机电力系统分析、高压简直没办法学。

对于这门课,你要想真正的领悟和掌握,奥秘就在于不能停止思考。而且我觉得这是最重要的一点。我以江辑光的《电路原理》为例(这本书编的相当不错)解释为何不能停止思考。

电路几乎是第一本开始培养你工程师思维的书,它不同于数学物理,很多可以理论推导。而电路更多的是你的思考和不断累积的经验。

在江的书中,前面用了四章讲解了电阻电路的基本知识,包括参考方向问题、替代定理,支路法、节点电压、回路电流、戴维南、特勒根、互易定理。这些基本内容都要掌握到烂熟于心才能在之后的章节里灵活的用。怎样才能烂熟于心?我时刻提醒自己要不停思考。这套教材的课后习题就是最好的激发你大脑思考能力的宝库。可以说里面的每一道题都极具针对性,题目并不难。

一个合格的工程师应该把更多的时间留给思考如何最合理地解决问题,而不是花大把时间计算,电路的计算量是非常大的,一个节点电压方程组有可能是四元方程,显然这些东西留给计算器算就好了。为了学好电路你应该买一个卡西欧991,节省那些不必要浪费的时间留下来思考问题本身。

前四章的基础一定要打得极为扎实,不是停留在只是会用就行了,那样学不好电路。你要认真研究到每个定理是怎么来的,最好自己可以随手证明,你要知道戴维宁是有叠加推出来的,而叠加定理又是在电阻电路是线性时不变得来的,互易定理是由特勒根得来的。这一切知识都是靠细水长流一点点积累出来的,刚开始看到他们你会觉得迷糊,但你要相信这是一个过程,渐渐地你会觉得电路很美妙甚至会爱上它。当你发现用一页纸才能解出来的答案,你只用五六行就可以将其解决,那时候你就会感觉电路好像是从身体中流淌出来一般。这就是一直要追求的境界。

后面就是非线性,这一章很多学校要求都不高,而且考起来也不难,最为兴趣的话研究起来很有意思。

接着后面是一阶二阶动态电路,这里如果你高数的微分方程学得不错的话,高中电路知识都极本可以解了。这一部分的本质就是求解微分方程。

说白了,你根据电路列出微分方程是需要用到电路知识的,剩下来怎么解就看你的数学功底了。

但是电路老师们为了给我们减轻压力有把一阶电路单独拿出来做了一个专题,并将一切关于它上面的各支路电流或者电压用一个简单的结论进行了总结,即三要素法。

学了三要素一阶电路连方程也不用列了。只要知道电路初始状态、末状态和时间常数就可以得到结果。如果你愿意思考,其实二阶电路也可以类比它的,在二阶电路中你只要求出时间常数,初值和末值,同样也可以求通解。

在这部分的最后,介绍了一种美妙的积分——卷积。很多人会被他的名字唬住,提起来就很高科技的样子。其实它的确很高科技,但只要你掌握它的精髓,能够很好的用它,对你的电路思维有极大的提升,关于卷积在知乎和百度上都有很多很好的解释和生动的例子,我也是从他们那里汲取经验的。我在这里只能提醒你,不要因为老师不做重点就忽略卷积,否则这将无异于丢了一把锐利的宝剑。记得我在学习杜阿美尔积分(卷积的一种)的时候,感觉如获至宝,虽然书上对它的描述只有一句话。但为了那一句我的心情竟久久无法平静,因为实在太好用了。

接下来是正弦电路,这里主要是要理解电路从时域域的转化,这里是电路的第一次升华,伟大的人类用自己的智慧把交流量头上打个点,然后一切又归于平静了,接下来还是前四章的知识。我想他用的就是以不变应万变的道理吧,所有量都以一个频率在变,其效果就更想对静止差不多了吧,但是他们对电容和电感产生了新的影响,因为他们的电流电压之间有微分和积分的关系。在新的思路下你可以将电感变成jwl,将电容变成1/jwc,接下来你又改思考为什么可以这样变。

这是在极坐标下的电流电压关系可以推导出来的。你要再追根溯源说,为什么可以用复数来代替正弦?那是因为欧拉公式将正弦转化成了复数表达。你还问欧拉公式又是什么?它是迈克劳林(泰勒)公式得到的。你必须不断地思考,不断地提问才能明白这一起是怎么回事。

不过这都是基础,在正弦稳态这里精髓在于画向量图,能正确地画出向量图你才能说真正理解了它。向量图不是乱画的,不是你随便找个支路放水平之后就可以得到正确的图,有时候走错了路得不到正确答案不说,反而可能陷入思维漩涡。做向量图一般要以电阻支路或者含有电阻的支路为水平向量,接下来根据它的电流电压来一步步推。而且很多难题都是把很多信息隐藏在图里面,不画得一幅好图你是解不出来的。这也需要自己揣摩。

后面是互感,我相信很多人被同名端折磨的死去活来。其实,电感是描述,线圈建立磁场能力的量,电感大了,产生磁场越大。所以同名端的意思就是:从同名端流入的电流,磁场相加,表现在方程上为电感相加。只要牢记这一点,列含有互感的方程式就不会错了。你不要胡思乱想,有时候你会被电流方向弄糊涂,别管它,图上画的是参考方向,就算你假设的方向与实际方向反了,对真确结果依然没有丝毫影响。这里其实是考察你对参考方向的理解。

然后是谐振,这是很有趣也很有用的一节,无论是电气,通信,模电还是高压都离不开它。这是在一种美妙的状态下,电厂能量和立场能量达到完美的交替。通过谐振可以实现滤波、升压等具有实际意义的电路。但就电路内容来说这里并不难,总结一下就是,阻抗虚部为零则串联谐振,导纳虚部为零为并联谐振。在求解谐振频率时有时候用导纳求解会比较方便,这在于多做题开阔思路。

接下来是三相电路。要我来说,三相电路是最简单的部分。很多人觉得它难(当然一开始我也觉得它让人头晕),完全是因为我们总是害怕恐惧本身。其实你看它有三个地但一点也不难。这要你头脑清晰别被他的表面吓住了。三相电路跟普通电路没有任何区别。做到五个六个电源也不会害怕,因为你知道,一个所有元件都告知的电路,用节点电压或回路电流肯定是可以求的出来的。为什么到了三相你就被吓得魂不守舍了。你是不明白线电压和相电流的关系,还是一相断线对中线电流的影响?你管那些干嘛?什么相啊线呀都只是个代号而已。你把它看成一个普通电路解,它就是一个普通电路而已。很多同学总是喜欢在线和相的关系上纠结。其实一句话就可以概括的:线量都是向量的根3倍。其实这些都不用记,需要的时候画个图就来了。最重要的是你要明白三相只不过是个有三个电源的普通电路而已。你只要会节点电压法,不学三相的知识都可以解答的很好。当你以一个正常电路看它的时候,三相就已经学得差不多了。三相唯一的难点在计算,只要你是个细心的人,平时多找几个题算算,以后三相想错都难。

后面是拉普拉斯变换。这里是电路思维的又一次飞跃。人们发现高阶电路真的不好求解,而且如果电源改变的话除了卷积,找不到更好的办法。所以为了方便的使用卷积,前辈们把拉氏变换引入电路。如果说前面正弦稳态时域到频域是由泰勒公式一步步推来的。那这里就是高数的最后一章——傅立叶变换推倒的。关于傅立叶知乎也有许多精彩的讲解,自己找吧。傅立叶变换有两种形式,一种是时域形态,一种是频域形态。而拉普拉斯变换就是将由频域形态的傅立叶变换,推广到复频域形态。其基本变换公式也是由傅立叶变换公式推广得到的。这一章的学习,你要从变换公式入手,自己把基本的几个变换推导出来。还要理解终值定理和初值定理,这两个定理是检验结果正确与否的有力证据。

学电路只知道思路是一回事,能做对是另外一回事。只有在学习中不断培养自己开阔的视野和强大的计算能力才可以学好这门课,学电路是要靠硬功夫的,你看着老师解题的时候感觉信手拈来,自己却百思不得其解。那是功夫没下到位。我考研时看了电路大概一百天,新书都翻烂了,自己的旧书都快散架了,各种习题不计重复的做了至少1500道以上。当我做电路的时候,我会觉得时间停止了,根本感受不到自习室里还有别人。那种你在冥思苦想后终于解决一个问题所带来的足以让你笑出声来的快乐,是陪伴着我的最好的药。每天走在月光下,我都会想,如果当不了科学家,那就干点别的吧。

所以说啊,要学好电路,还是要发自内心的爱上它。

最后,给大家推荐几本电路原理参考书:江辑光的《电路原理》清华大学出版社,周守昌的《电路原理上、下》,邱关源的《电路》,学电路只看一本书是不够的,要全面的掌握知识必需从多角度考量,不同老师看待问题方式不同,要多加比较才能发现精髓。电路习题集可以买清华大学的红皮书——研究生入学习题集。还有清华大学陆文娟的《学习指导与习题集》。这些题目很经典,难度适中。如果想进一步提高电路水平请看向国菊编的《电路经典题型》,个人觉得向老师编的这本是集结电路史上最强的题目,能完全吃透它,将非常了不起,不过题目都是二十多年前的了,很多内容已经不讲了,但作为提高绝对可以增加十年功力。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 电阻
    +关注

    关注

    86

    文章

    5509

    浏览量

    171975
  • 电路
    +关注

    关注

    172

    文章

    5906

    浏览量

    172184

原文标题:高手经验:学电路原理,你得这么做

文章出处:【微信号:edn-china,微信公众号:EDN电子技术设计】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    电机控制使用AMC1200或AMC1306等芯片,在线上采样电流时是否还需要做PWM的触发同步?

    电机控制使用AMC1200或AMC1306等芯片,在线上采样电流时是否还需要做PWM的触发同步? 在线上采样电流,电流应该是连续的,是否能一直读取电流信号而忽略PWM的开关时刻。 如果这么做,是否有必要担心大功率的开关噪声会影响电流采样
    发表于 12-10 08:12

    ADS1291在心电测量中这四个10M欧姆电阻的作用是什么呢?

    图中R3、R4以及R5、R6的作用是什么呢,在我看来是将IN1P/N的电压拉升到(AVDD+AVSS)/2,那么这么做是为什么呢?请指教。
    发表于 11-18 06:54

    OpenHarmony应用开发精品课程重磅来袭

    第一阶段为期两个月的10期课程,多位资深技术专家为讲解原理、分享经验,带领一块进行代码实操,助力从小白进阶成为OpenHarmony应用开发
    的头像 发表于 11-02 08:03 240次阅读
    OpenHarmony应用开发精品课程重磅来袭

    AGM32VF407的大部分IO可以随意配置,这是这么做到的?

    AGM32VF407的大部分IO可以随意配置,除了少数的专用引脚外,这是这么做到的?这里包括异构的RISC-V内核的外设哦。非常感兴趣呢。
    发表于 10-31 19:07

    在多级运放电路中,有些电路将后级信号通过电阻或电容反馈到前级运放的输入端,为什么?

    在多级运放电路中,发现有些电路将后级信号通过电阻或电容反馈到前级运放的输入端,请问这么做的具体含义及理论是什么呢?
    发表于 09-11 06:41

    主频从100M骤降到12M,什么样的 MCU 敢这么做

    同一款MCU,主频居然从100MHz骤降到12MHz。在性能为王的时代,这样真的好吗?跟随豆豆和妮姐,一起探索吧——MCU主频越高越好?现在一提到MCU的主频,感觉如果主频没有上百MHz,都
    的头像 发表于 08-30 12:45 963次阅读
    主频从100M骤降到12M,什么样的 MCU 敢<b class='flag-5'>这么做</b>?

    为什么电路要设计这么复杂?

    电路设计的复杂性主要源于以下几个方面: 功能需求:电路需要实现特定的功能,如信号处理、数据传输、控制等。为了实现这些功能,电路必须包含相应的电子元件和连接,这自然增加了设计的复杂性。 性能要求:
    的头像 发表于 08-21 17:32 489次阅读

    客户有哪些封装案例,一句克服使用让PCBA工厂泪流满面

    客户一句克服使用让PCBA工厂泪流满面,今天我们一起来盘点盘点客户那些特殊的PCB设计和封装建立,都是否有经历过,或者正准备这么做
    的头像 发表于 06-25 14:20 298次阅读
    客户有哪些封装案例,一句克服使用让PCBA工厂泪流满面

    请问efuse以及flash区域是否只能通过SDK的API读写?

    请问efuse以及flash区域是否只能通过SDK的API读写?是否能通过指针引用绝对地址读写,比如: 写入 *(uint32_t *)(0xf4000) = 0x02; 读取 a = *(uint32_t *)(0xf4000) 如果支持这么做,我该怎么知道efuse、flash的绝对地址呢?
    发表于 06-11 08:10

    常用的MOS电源开关的电路分享

    随着对器件的控制需求提升,越来越多的电源开关电路出现在设计中。这些设计的目的各有不同:有的需要快速开通与关断,有的需要低导通电阻+大电流,有的需要闲时0功耗。虽然应用场合不同,但开关可是MOS
    的头像 发表于 05-09 18:13 7564次阅读
    常用的MOS<b class='flag-5'>做</b>电源开关的<b class='flag-5'>电路</b>分享

    电路板的小伙伴,有想问为什么PCB地与金属机壳用阻容连接吗?

    电路板的小伙伴,有想问为什么PCB地与金属机壳用阻容连接吗? 摘 要 电子产品接地问题是一个老生常谈的话题,本文单讲其中一小部分,主要内容是金属外壳与电路板的接地问题。我们经常会看
    的头像 发表于 03-28 17:46 839次阅读
    <b class='flag-5'>做</b><b class='flag-5'>电路</b>板的小伙伴,<b class='flag-5'>你</b>有想问为什么PCB地与金属机壳用阻容连接吗?

    关于智能门禁设备CCC认证申请的一些经验分享

    智能门禁设备是现代社会安全管理的重要组成部分。为了在中国市场销售,智能门禁设备需要获得中国强制性产品认证(ChinaCompulsoryCertification,简称CCC)。下面是智能门禁设备
    的头像 发表于 03-07 17:10 523次阅读
    关于智能门禁设备<b class='flag-5'>做</b>CCC认证申请的一些<b class='flag-5'>经验</b>分享

    NEAR 联创 Illia:AI 时代的数字自我主权

    OpenAI 一开始是一家非营利组织,现在可以赚取数十亿美元;谷歌因为对广告缺乏控制而遭到起诉;Sora 的问世既让人们兴奋,同时也让一部分人深感担忧。我想说的是,这些公司并不是故意这么做的,问题的症结在于激励。如果设置激励试图取得更多收入,
    的头像 发表于 03-07 10:10 332次阅读

    TLE9879 Evalkit外部SWD连接J-link pro失败的原因?怎么解决?

    各位好,我焊接了一下TLE9879 Evalkit的外部SWD接口,但是用j-link pro连接的时候,发现怎么都无法连上,不知道什么原因。请问一下TLE9879 Evalkit是支持这么做的吧?接法上还有什么讲究吗?谢谢!
    发表于 01-31 06:54

    通过设置外部电容Cout和外部电阻Rout的方法来设置ADXRS646的带宽,请问这么做有带宽上限吗?

    fout = 1/(2 ×× Rout × Cout); Rout = (180 k× Rext)/(180 k+ Rext)通过设置外部电容Cout和外部电阻Rout的方法来设置ADXRS646的带宽,请问这么做有带宽上限吗?最佳带宽是多少?多谢各位大神!
    发表于 12-29 08:32