0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

麻省理工新神经网络芯片速度增6倍 功耗少94%

wg7H_MooreNEWS 来源:未知 作者:邓佳佳 2018-03-19 15:20 次阅读

据MIT News报道,麻省理工学院(MIT)的研究人员开发出了一种可用于神经网络计算的高性能芯片,该芯片的处理速度可达其他处理器的7倍之多,而所需的功耗却比其他芯片少94-95%,未来这种芯片将有可能被使用在运行神经网络的移动设备或是物联网设备上。

MIT电子工程与计算科学研究生阿维谢克·碧斯沃斯(Avishek Biswas)是这个项目开发的领导者,他表示:“总体来说一般的处理器的运行模式是这样的,在芯片的一些部分里安放了内存,在进行计算的时候,它会在这些内存中来回移动数据。由于机器学习算法需要大量的算力,因此在来回移动数据的时候会消耗大量的能源。但是其实这些算法所做的计算可以被简化成一个种具体的操作,这种操作被称为点积(dot product)。我们的想法是,我们是否可以将这个点积功能部署在内存中,从而无需在不断的移动这些数据?”

这个芯片会将结点的输入值转化为电压,然后在进行储存和进一步处理的时候,再将其转换为数字形式。这种做法让这块芯片能够在一个步骤中同时对16个结点的点积进行计算,而且无需在内存和处理器之间移动数据。MIT News认为这种处理方法更加接近于人类大脑的工作方式。

神经网络

碧斯沃斯将会在一篇论文中详细阐述这块芯片的工作方式,这篇论文将会在国际固态电路大会期间发表,和他一起撰写论文的还有他的论文指导老师,MIT工程学院院长阿南莎·钱德拉卡珊(Anantha Chandrakasan)以及MIT电子工程与计算机科学教授范内瓦·布什(Vannevar Bush)。

去年12月,SensibleVision公司CEO乔治·布罗斯托夫(George Brostoff)在曾经在《生物学更新(Biometric Update)》发表了一篇客座文章,证明了定制化处理器有可能会给移动设备的安全识别功能带来巨大的变革。那以后,FWDNXT也宣布他们将会开发使用深度神经网络进行图像识别与归类的低功耗处理器,此外ARM也宣布将会开发用于机器学习和物体识别的芯片。


声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 神经网络
    +关注

    关注

    42

    文章

    4762

    浏览量

    100519

原文标题:淘汰CPU!新神经芯片速度增6倍 功耗少94%

文章出处:【微信号:MooreNEWS,微信公众号:摩尔芯闻】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    卷积神经网络与传统神经网络的比较

    在深度学习领域,神经网络模型被广泛应用于各种任务,如图像识别、自然语言处理和游戏智能等。其中,卷积神经网络(CNNs)和传统神经网络是两种常见的模型。 1. 结构差异 1.1 传统神经网络
    的头像 发表于 11-15 14:53 167次阅读

    BP神经网络和卷积神经网络的关系

    BP神经网络(Backpropagation Neural Network)和卷积神经网络(Convolutional Neural Network,简称CNN)是两种在人工智能和机器学习领域
    的头像 发表于 07-10 15:24 1188次阅读

    BP神经网络和人工神经网络的区别

    BP神经网络和人工神经网络(Artificial Neural Networks,简称ANNs)之间的关系与区别,是神经网络领域中一个基础且重要的话题。本文将从定义、结构、算法、应用及未来发展等多个方面,详细阐述BP
    的头像 发表于 07-10 15:20 810次阅读

    rnn是递归神经网络还是循环神经网络

    RNN(Recurrent Neural Network)是循环神经网络,而非递归神经网络。循环神经网络是一种具有时间序列特性的神经网络,能够处理序列数据,具有记忆功能。以下是关于循环
    的头像 发表于 07-05 09:52 489次阅读

    递归神经网络是循环神经网络

    递归神经网络(Recurrent Neural Network,简称RNN)和循环神经网络(Recurrent Neural Network,简称RNN)实际上是同一个概念,只是不同的翻译方式
    的头像 发表于 07-04 14:54 625次阅读

    循环神经网络和卷积神经网络的区别

    循环神经网络(Recurrent Neural Network,RNN)和卷积神经网络(Convolutional Neural Network,CNN)是深度学习领域中两种非常重要的神经网络
    的头像 发表于 07-04 14:24 1104次阅读

    深度神经网络与基本神经网络的区别

    在探讨深度神经网络(Deep Neural Networks, DNNs)与基本神经网络(通常指传统神经网络或前向神经网络)的区别时,我们需要从多个维度进行深入分析。这些维度包括
    的头像 发表于 07-04 13:20 655次阅读

    人工智能神经网络芯片的介绍

    人工智能神经网络芯片是一类专门为深度学习和神经网络算法设计的处理器。它们具有高性能、低功耗、可扩展等特点,广泛应用于图像识别、语音识别、自然语言处理等领域。以下是关于人工智能
    的头像 发表于 07-04 09:33 576次阅读

    神经网络芯片与传统芯片的区别和联系

    引言 随着人工智能技术的快速发展,深度学习算法在图像识别、自然语言处理、语音识别等领域取得了显著的成果。然而,深度学习算法对计算资源的需求非常高,传统的计算芯片已经无法满足其需求。因此,神经网络芯片
    的头像 发表于 07-04 09:31 705次阅读

    神经网络芯片和普通芯片区别

    神经网络芯片和普通芯片的区别是一个复杂而深入的话题,涉及到计算机科学、电子工程、人工智能等多个领域。 定义 神经网络芯片(Neural Ne
    的头像 发表于 07-04 09:30 893次阅读

    反向传播神经网络和bp神经网络的区别

    反向传播神经网络(Backpropagation Neural Network,简称BP神经网络)是一种多层前馈神经网络,它通过反向传播算法来调整网络中的权重和偏置,以达到最小化误差的
    的头像 发表于 07-03 11:00 663次阅读

    bp神经网络是深度神经网络

    BP神经网络(Backpropagation Neural Network)是一种常见的前馈神经网络,它使用反向传播算法来训练网络。虽然BP神经网络在某些方面与深度
    的头像 发表于 07-03 10:14 672次阅读

    bp神经网络和卷积神经网络区别是什么

    BP神经网络(Backpropagation Neural Network)和卷积神经网络(Convolutional Neural Network,简称CNN)是两种不同类型的人工神经网络,它们在
    的头像 发表于 07-03 10:12 994次阅读

    卷积神经网络和bp神经网络的区别

    卷积神经网络(Convolutional Neural Networks,简称CNN)和BP神经网络(Backpropagation Neural Networks,简称BPNN)是两种
    的头像 发表于 07-02 14:24 2796次阅读

    麻省理工与Adobe新技术DMD提升图像生成速度

    2023年3月27日,据传,新型文生图算法虽然使得图像生成无比逼真,但奈何运行速度较慢。近期,美国麻省理工学院联合Adobe推出新型DMD方法,仅略微牺牲图像质量就大幅度提高图像生成效率。
    的头像 发表于 03-27 14:17 477次阅读