看点:模仿低功耗、高运算力人脑的类脑芯片,能给机器带来人类智能吗?
导语:最近半年以来,人工智能的发展重心逐渐从云端向终端转移,相伴而生的是全新一代的计算芯片产业全面崛起。智东西历经数月,首次对包括AI芯片在内的新一代计算芯片全产业链上下近百间核心企业进行报道,覆盖国内外各大巨头玩家、新兴创企、场景应用、代工生产等,全面深入地对芯片产业发展、创新创业进行了追踪报道。此为智东西新一代计算芯片产业系列报道之一。
国内外有许多公司和机构正在类脑芯片研发上投入大量精力,美国在此项研究上开始较早,2014年IBM就推出了业内首款类脑芯片TrueNorth。国内最近几年在芯片研发上也不甘示弱,也有西井科技这样的初创公司投身到类脑芯片的研发中来,清华等知名高校也纷纷建立类脑研究中心。
相比于传统芯片,类脑芯片的确在功耗上具有绝对优势,拿英特尔在本次CES上展出的自我学习芯片Loihi来说,不仅其学习效率比其他智能芯片高100万倍,而且在完成同一个任务所消耗的能源比传统芯片节省近1000倍。类脑芯片的集成度也非常高,拿浙大推出的“达尔文”芯片来说,其面积为25平方毫米,也就是说边长只有0.5厘米,但内部却能包含500万个晶体管。随着行业对计算力要求越来越高,冯氏瓶颈将越来越明显,颠覆传统架构的类脑芯片已为芯片行业开启了一扇新的大门。
传统芯片遇冯·诺依曼瓶颈 模拟神经元成新思路
人脑神经元在接受到刺激后,其细胞膜内外带电离子分布将发生变化,因而形成电位差,电位差将沿着神经细胞轴突、树突双向传导,形成脉冲电流。而当该电信号传递到突触时,突触前神经元将释放神经递质(如多巴胺、肾上腺素)由突触后神经元接受神经递质产生兴奋(该过程单向传递),并向下传递作用与人体反应器并发生反应。
2011年8月,IBM率先在类脑芯片上取得进展,他们在模拟人脑大脑结构基础上,研发出两个具有感知、认知功能的硅芯片原型。但因技术上的限制,IBM戏称第一代TrueNorth为“虫脑”。2014年TrueNorth第二代诞生,它使用了三星的28nm的工艺,共用了54亿个晶体管,其性能相比于第一代有了不少提升。功耗每平方厘米消耗仅为 20 毫瓦,是第一代的百分之一,直径仅有几厘米,是第一代的十五分之一。
▲IBM Truenorth芯片
每个核都简化模仿了人类大脑神经结构,包含256个“神经元”(处理器)、256个“轴突”(存储器)和64000个突触(神经元和轴突之间的通信)。总体来看,TrueNorth芯片由4096个内核,100万个“神经元”、2.56亿个“突触”集成。此外,不同芯片还可以通过阵列的方式互联。
IBM称如果 48颗TrueNorth芯片组建起具有4800万个神经元的网络,那这48颗芯片带来的智力水平将相似于普通老鼠。
从2014年亮相后,这款芯片一直没有大的动作。不久前,TrueNorth终于传出了新进展,有报道称IBM公司即将开发由64个“TrueNorth”类脑芯片驱动的新型超级计算机。这一计算机能进行大型深度神经网络的实时分析,可用于高速空中真假目标的区分,并且功耗比传统的计算机芯片降低4个数量级。如果该系统功耗可以达到人脑级别,那么理论上就可以在64颗芯片原型基础上进一步扩展,从而能够同时处理任何数量的实时识别任务。
2、英特尔Loihi芯片
▲英特尔神经拟态芯片Loihi
国内也开始了类脑芯片的研究,除清华等知名高校开设研究院外,也出现了专注类脑芯片研发的创企,代表企业如上海的西井科技。
4、西井科技DeepSouth芯片
西井科技是国内研究类脑强人工智能的公司,目前西井已推出了自主研发的拥有100亿规模的神经元人脑仿真模拟器(Westwell Brain)和可商用化的5000 万类脑神经元芯片(DeepSouth)两款产品。 DeepSouth 是一款可商用化的芯片,它能模拟出高达 5000 万级别的“神经元”,总计有 50 多亿“神经突触”。据西井CEO谭黎敏称,该芯片除了具备“自我学习、自我实时提高”的能力外,还可以直接在芯片上完成计算,不需要通过网络连接后台服务器,可在“无网络”情况下使用。
能耗方面,DeepSouth 在同一任务下的功耗仅为传统芯片的几十分之一到几百分之一。
5、浙大“达尔文”类脑芯片
▲浙大和杭州电子科技共同研发的“达尔文”芯片
2015年一群来自浙江大学与杭州电子科技大学的年轻的研究者们研发出一款成为达尔文的类脑芯片。这款芯片是国内首款基于硅材料的脉冲神经网络类脑芯片。“达尔文”芯片面积为25平方毫米,比1元硬币还要小,内含500万个晶体管。芯片上集成了2048个硅材质的仿生神经元,可支持超过400万个神经突触和15个不同的突触延迟。
据研发团队介绍说,这款芯片可从外界接受并累计刺激,产生脉冲(电信号)进行信息的处理和传递,这如我们前面提到的人类神经元间的信息传递一样。研发人员还为“达尔文”开发了两款简单的智能应用。一是这款芯片可识别不同人手写的1-10这10个数字,二是“达尔文”在接受了人类脑电脑后,可控制电脑屏幕上篮球的移动方向。在熟悉并学习了操作者的脑电波后,“达尔文”会在后续接受相同刺激时做出同样反映。
人脑的这三大特性始终是计算机无法比拟的:一是低能耗,人脑的功率大约为20瓦,而目前计算机功耗需要几百万瓦;二是容错性,人脑时刻都在失去神经元,而计算机失去一个晶体管就会破坏整个处理器;三是无需编程,大脑在于外界交互过程中自发学习和改变,并非遵循预先设计好的算法。
中国也十分重视类脑研究,并将类脑计算作为国家战略发展的制高点。中国不仅在2015年将脑计划作为重大科技项目列入国家“十三五”规划,还发布了关于脑计划“一体两翼”的总体战略:一体即认识脑:以阐释人类认知的神经基础为主体和核心;两翼即保护脑:预防、诊断和治疗脑重大疾病和模拟脑:类脑计算。
中国的学术界也展开了对类脑的研究,2015 年中科院、清华、北大,相继成立“脑科学与类脑智能研究中心”,2017年5月在合肥成立了类脑智能技术及应用国家工程实验室。这些实验室将借鉴人脑机制攻关人工智能技术,推进类脑神经芯片、类脑智能机器人等新兴产业发展。
结语:类脑芯片或将赋予机器智能
目前,搭载神经网络引擎的芯片层出不穷,芯片巨头和初创们都在原有的冯诺依曼架构上争相利用神经网络优化芯片计算力。从目前这类AI芯片的表现上看,FPGA的灵活性较好但开发难度大,ASIC因其功耗低、开发难度适中将在终端AI芯片上具有较大优势。
-
芯片
+关注
关注
456文章
50967浏览量
424875 -
人工智能
+关注
关注
1792文章
47443浏览量
239020
原文标题:类脑芯片:机器超越人脑的最后一击
文章出处:【微信号:WW_CGQJS,微信公众号:传感器技术】欢迎添加关注!文章转载请注明出处。
发布评论请先 登录
相关推荐
评论