0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

Sentient揭示了人工智能神经进化的突破性研究

mK5P_AItists 来源:未知 作者:李倩 2018-03-26 17:06 次阅读

过去几年时间里,我们有一个完整的团队致力于人工智能研究和实验。该团队专注于开发新的进化计算方法(EC),包括设计人工神经网络架构、构建商业应用程序,以及使用由自然进化激发的方法来解决具有挑战性的计算问题。这一领域的发展势头非常强劲。我们相信进化计算很可能是人工智能技术的下一个重大课题。

EC与Deep Learning(DL)一样都是几十年前引入的,EC也能够从可用的计算和大数据中得到提升。然而,它解决了一个截然不同的需求:我们都知道DL侧重于建模我们已知的知识,而EC则专注于创建新的知识。从这个意义上讲,它是DL的下个步骤:DL能够在熟悉的类别中识别对象和语音,而EC使我们能够发现全新的对象和行为-最大化特定目标的对象和行为。因此,EC使许多新的应用成为可能:为机器人和虚拟代理设计更有效的行为,创造更有效和更廉价的卫生干预措施,促进农业机械化发展和生物过程。

前不久,我们发布了5篇论文来报告在这一领域上取得了显著的进展,报告主要集中在三个方面:(1)DL架构在三个标准机器学习基准测试中已达到了最新技术水平。(2)开发技术用于提高实际应用发展的性能和可靠性。(3)在非常困难的计算问题上证明了进化问题的解决。

本文将重点介绍里面的第一个领域,即用EC优化DL架构。

Sentient揭示了神经进化的突破性研究

深度学习的大部分取决于网络的规模和复杂性。随着神经进化,DL体系结构(即网络拓扑、模块和超参数)可以在人类能力之外进行优化。我们将在本文中介绍三个示例:Omni Draw、Celeb Match和Music Maker(语言建模)。在这三个例子中,Sentient使用神经进化成功地超越了最先进的DL基准。

音乐制作(语言建模)

在语言建模领域,系统被训练用来预测“语言库”中的下一个单词,例如《华尔街日报》几年内的大量文本集合,在网络做出预测结果后,这个输入还可以被循环输入,从而网络可以生成一个完整的单词序列。有趣的是,同样的技术同样适用于音乐序列,以下为一个演示。用户输入一些初始音符,然后系统根据该起始点即兴创作一首完整的旋律。通过神经元进化,Sentient优化了门控周期性(长期短期记忆或LSTM)节点(即网络的“记忆”结构)的设计,使模型在预测下一个音符时更加准确。

在语言建模领域(在一个叫Penn Tree Bank的语言语料库中预测下一个词),基准是由困惑点定义的,用来度量概率模型如何预测真实样本。当然,数字越低越好,因为我们希望模型在预测下一个单词时“困惑”越少越好。在这种情况下,感知器以10.8的困惑点击败了标准的LSTM结构。值得注意的是,在过去25年内,尽管人类设计了一些LSTM变体,LSTM的性能仍然没有得到改善。事实上,我们的神经进化实验表明,LSTM可以通过增加复杂性,即记忆细胞和更多的非线性、平行的途径来显著改善性能。

为什么这个突破很重要?语言是人类强大而复杂的智能构造。语言建模,即预测文本中的下一个单词,是衡量机器学习方法如何学习语言结构的基准。因此,它是构建自然语言处理系统的代理,包括语音和语言接口、机器翻译,甚至包括DNA序列和心率诊断等医学数据。而在语言建模基准测试中我们可以做得更好,可以使用相同的技术建立更好的语言处理系统。

Omni Draw

Omniglot是一种可以识别50种不同字母字符的手写字符识别基准,包括像西里尔语(书面俄语)、日语和希伯来语等真实语言,以及诸如Tengwar(《指环王》中的书面语言)等人工语音。

上图示例展示了多任务学习,模型可以同时学习所有语言,并利用不同语言中字符之间的关系。例如,用户输入图像,系统根据匹配输出不同语言的含义,“这将是拉丁语中的X,日语中的Y以及Tengwar中的Z等等”——利用日本、Tengwar和拉丁语之间的关系找出哪些角色是最好的匹配。这与单一任务学习环境不同,单一环境下模型只对一种语言进行训练,并且不能在语言数据集上建立相同的连接。

虽然Omniglot是一个数据集的例子,但每个语言的数据相对较少。例如它可能只有几个希腊字母,但很多都是日语。它能够利用语言之间关系的知识来寻找解决方案。为什么这个很重要?对于许多实际应用程序来说,标记数据的获取是非常昂贵或危险的(例如医疗应用程序、农业和机器人救援),因此可以利用与相似或相关数据集的关系自动设计模型,在某种程度上可以替代丢失的数据集并提高研究能力。这也是神经进化能力的一个很好的证明:语言之间可以有很多的联系方式,并且进化发现了将他们的学习结合在一起的最佳方式。

Celeb Match

Celeb Match的demo同样适用于多任务学习,但它使用的是大规模数据集。该demo是基于CelebA数据集,它由约20万张名人图像组成,每张图片的标签都由40个二进制标记属性,如“男性与女性”、“有无胡子”等等。每个属性都会产生一个“分类任务”,它会引导系统检测和识别每个属性。作为趣味附加组件,我们创建了一个demo来完成这项任务:用户可以为每个属性设置所需的程度,并且系统会根据进化的多任务学习网络来确定最接近的名人。例如,如果当前的图片为布拉德·皮特的形象,用户可以增加“灰色头发”属性,已发现哪个名人与他相似但是头发不同。

在CelebA多任务人脸分类领域,Sentient使用了演化计算来优化这些检测属性的网络,成功将总体三个模型的误差从8%降到了7.94%。

这一技术使得人工智能在预测人类、地点和物质世界各种属性的能力上提升了一大步。与基于抽象,学习功能找到相似性的训练网络不同,它使相似的语义和可解释性也成为可能。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 人工智能
    +关注

    关注

    1791

    文章

    46845

    浏览量

    237535
  • 深度学习
    +关注

    关注

    73

    文章

    5492

    浏览量

    120975

原文标题:推荐!神经进化才是深度学习未来的发展之路!

文章出处:【微信号:AItists,微信公众号:人工智能学家】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    人工智能是什么?

    阶段、超强人工智能阶段。 怎么评定机器人处于什么阶段呢,一般都以机器人的“智商度”作为衡量标准。这其实也和“人工智能”领域本身很好的衔接对应。 回到文章题目本身,什么是人工智能
    发表于 09-16 15:40

    人工智能技术—AI

    信息、服务、情感的交流。小度会学习、有知识、善交流、能思考、懂情感,是一个有梦想的智能机器人  今年9月,百度总裁李彦宏在大会上发布进化版小度机器人“度秘”,进一步布局人工智能产业。
    发表于 10-21 12:03

    人工智能的前世今生 引爆人工智能大时代

    醒来人工智能的时代就到来了。就像前段时间引力波被探测出来,我越来越觉得——Anything is possible。然后我有开始查很多关于人工智能的资料,想和大家一起来看看人工智能
    发表于 03-03 11:05

    人工智能事实上是一种生物进化历程的压缩

    突破性的发展,数学常被认为是多种学科的基础科学,数学也进入语言、思维领域,人工智能学科也必须借用数学工具,数学不仅在标准逻辑、模糊数学等范围发挥作用,数学进入人工智能学科,它们将互相促进而更快地发展
    发表于 03-08 10:56

    百度总裁:百度在人工智能领域已有重大突破

      随着阿法狗大战李世石,人工智能引发越来越多的关注。百度总裁张亚勤28日表示,百度长期坚持技术创新,2015年研发投入超过100亿元,目前在人工智能领域已有重大突破。  张亚勤在天津夏季达沃斯论坛
    发表于 07-01 15:22

    人工智能发展的好与坏

    字:未雨绸缪。”未来如果普遍使用人工智能,它们代替人类做一些工作,甚至是人类自身做不到的人工智能却都能做到,那人们将会有更多的时间来做自己喜欢的事,未来的发展会更美好更方便。尽管人工智能
    发表于 06-24 14:47

    2018全球十大突破性技术发布

    “全球十大突破性技术”分别是给所有人的人工智能、对抗性神经网络、人造胚胎、基因占卜、传感城市、巴别鱼耳塞、完美的网络隐私、材料的量子飞跃、实用型3D金属打印机以及零碳排放天然气发电。1. 给所有人的
    发表于 03-27 16:07

    解读人工智能的未来

    `已历经60多年的人工智能在物联网以及大数据的推动下,实现飞跃式的发展,并且迎来了第三个黄金周期。必优传感今天和大家解读一下关于人工智能的未来。自从有人工智能,引发了人类的各种“未来
    发表于 11-14 10:43

    人工智能:超越炒作

    各国***都希望将自己置于人工智能的最高位置。虽然创造大量的国家AI计划,但预计中国(2030年GDP增​​长26%)和北美(增长14.5%)的经济增长最大,占全球影响力的近70%。根据最近的研究
    发表于 05-29 10:46

    新一代人工智能领域十大最具成长性技术展望具体有哪些?

    近年来,随着人工智能的进一步发展创新,新技术持续获得突破性进展,呈现出深度学习、跨界融合、人机协同、群智开放、自主操控等以应用为导向的新特征。加强新一代人工智能技术的前瞻预判,准确把握全球
    发表于 09-11 11:51

    大话人工智能成功进入测试阶段

    大话人工智能成功进入测试阶段人工智能英文简称为AI,英文全写Artificial Intelligence,中文直译就是人工智能人工智能是让人很感兴趣的话题,也是让人很神往的东西,可
    发表于 09-15 12:40

    人工智能的应用领域有哪些?

    ` 本帖最后由 cdhqyj 于 2020-10-23 11:09 编辑 人工智能的应用领域有哪些?人工智能的定义可以分为两部分,即“人工”和“智能”,应用领域非常广泛。麦肯锡全球
    发表于 10-23 11:07

    人工智能发展第一阶段

    人工智能发展第一阶段,开发近红外光激发的纳米探针,监测大脑深层活动,理解神经系统功能机制。开发、设计电压敏感纳米探针一直是个技术难关。群体神经元活动的在体监测是揭示
    发表于 07-28 07:51

    人工智能对汽车芯片设计的影响是什么

    点击上方“蓝字”,关注我们,感谢!人工智能(AI)以及利用神经网络的深度学习是实现高级驾驶辅助系统(ADAS)和更高程度车辆自主的强大技术。随着人工智能
    发表于 12-17 08:17

    《移动终端人工智能技术与应用开发》人工智能的发展与AI技术的进步

    人工智能打发展是算法优先于实际应用。近几年随着人工智能的不断普及,许多深度学习算法涌现,从最初的卷积神经网络(CNN)到机器学习算法的时代。由于应用环境的差别衍生出不同的学习算法:线性回归,分类与回归树
    发表于 02-17 11:00