0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

量子计算是否能扼制人工智能的冬天

fjYQ_ittbank 来源:未知 作者:胡薇 2018-04-02 17:42 次阅读

自1950年阿兰·图灵在其开创性论文——《计算机器与智能》中首次提出“机器能思考吗?”这个问题以来,人工智能AI)的发展并非一帆风顺,也尚未实现其“通用人工智能(Artificial General Intelligence)”的目标。

然而,该领域仍然取得了令人难以置信的进步,例如:IBM深蓝机器人击败世界上最优秀的象棋手、自动驾驶汽车的诞生,以及谷歌DeepMind的AlphaGo击败世界最佳围棋手……目前的成就展示了过去超过65年来最优秀的研发成果。

值得关注的是,在这段时间,存在两个有详细记录的“人工智能的冬天(AI Winters)”,几乎完全推翻了人们早期对人工智能的美好预期。导致人工智能冬天的因素之一是炒作与实际的根本进步之间的差距。

过去几年来,有推测称另一个人工智能冬天可能正在来临。那么,哪些因素可能引发下一个人工智能的冬天?有什么能帮助我们避免下一个人工智能的冬天?

1.第一个人工智能冬天

在1974年之前的几年里,人工智能领域的研究乏善可陈,令人失望,在与该领域一直所吹嘘的成果做比较时尤甚。

例如,在1970年,麻省理工学院的一名数学家Marvin Minsky在接受《生活杂志》采访时表示:“在3到8年内,我们将制造出一台具有一个普通人一般智力的机器。”事后看来,这在当时是一个非常大胆,而又莽撞的宣言。

1974年,第一个人工智能的冬天出现,这主要由Lighthill撰写的一篇报告引发。

报告发表于1973年,受英国科学研究委员会委托进行,旨在对当时的人工智能研究状况提供一个公正的评估。

在这份报告中,James Lighthill批评了人工智能并未实现其“宏伟目标”,并高度批判了机器人技术和语言处理等基本领域的基础研究进展。报道指出:“该领域到目前为止没有获得任何其承诺将产生的重大影响的发现。”

Lighthill的报告激起了英国和美国学术机构对人工智能大量的信心丧失,导致大规模的资金消减,最终引发第一个人工智能冬天的到来。

在表象的背后,值得注意的是,致使人工智能产业进入第一个冬天的其实是硬件问题。正如麻省理工学院约翰·麦卡锡的一名博士生——Hans Moravec所述,“计算机距表现出智力,仍有数百万倍的差距。”

2.第二个人工智能冬天

在1980年第一次人工智能冬天结束后,多家公司采用了一种名为“专家系统”的人工智能形式。

专家系统是一种机器,能回答问题,并能解决许多特定领域知识的问题,似乎展示出了人工智能早期做出的承诺。

这些系统运行在名为Lisp的特定人工智能机器上。在很大程度上,Lisp机器价格昂贵,且作为一种高度专业化的机器,其选择了一种狭隘的方式实现人工智能,以利用真实、有用的应用程序来展示解决方案,试图缩小实际成果与期望之间的差距。

在1987年,这种昂贵机器的市场崩塌了。这主要源于苹果公司和IBM公司台式计算机的崛起,为人们提供了更能买得起、更为精密、有更广泛用途的计算机。

与此同时,美国国防部高等研究计划局(DARPA)的新领导层大规模地削减了对人工智能产业的资金注入,因为他们认为专家系统等当前的方法无非就是“聪明的编程”。

这标志着第二个人工智能冬天的开始,这个冬天一直持续到了1993年。

3.第三个人工智能冬天会到来吗?

自1993年以来,人工智能领域取得了越来越令人瞩目的进步。

1997年,IBM公司的深蓝系统成为第一个打败世界象棋冠军加里﹒卡斯帕罗夫的计算机象棋选手。

2005年,一台斯坦福无人驾驶机器人未经“踩点儿”,便经一条沙漠道路自动驾驶131英里,赢得DARPA自动驾驶机器人挑战赛。

最近,在2016年初,谷歌旗下DeepMind的AlphaGo击败了世界最优秀的围棋选手。

这些都是人工智能成绩斐然的极好例子。然而,可以肯定的说,如果没有与之并存的计算机芯片中硅晶体管的指数级增长,也就是俗称的摩尔定律,所有这些成就都不可能发生。

正如前文所强调的,早期人工智能研究面对的一个普遍问题是严重缺乏计算能力,它们受限于硬件,而不是人类智力或能力。

在过去25年里,随着计算能力显著提高,我们在人工智能方面取得的进步也齐头并进。

然而,令人担忧的是,我们正在接近一个芯片上可以安装晶体管数量的理论上的物理界限。事实上,去年,英特尔披露,其正在放缓推出新芯片制造技术的步伐,因其难以在节约成本的情况下继续缩小晶体管体积。简而言之,摩尔定律的终点即将来临。

4.量子计算,防止下一个冬天的到来

有一些短期解决方案将能确保计算能力的继续增长,从而促进人工智能的进步。

例如,在2017年中期,谷歌宣布,其已开发一款专门的人工智能芯片,名为“云TPU”,该芯片对深度神经网络的训练和执行进行了优化。

本月早些时候,亚马逊宣布,其正在为Alexa(人工智能私人助理)开发自已的芯片。同时,目前还有众多初创公司试图调整芯片设计,以适应专门的人工智能应用程序。

然而,这些仅是短期解决方案。当我们用尽了能优化传统芯片设计的方案之后又会怎么样呢?我们会见到另一个人工智能冬天吗?

答案是肯定的,除非量子计算能超越经典计算,并找到更为坚实的答案。量子计算是一种量子比特叠加和纠缠产生的现象,能够大幅减少计算时间。而随着更多量子比特的增加,将带来计算能力的指数级增长。

但是到目前,可实现“量子霸权”、比传统计算机更加高效的量子计算机还不存在。幸运的是,许多不同的科技公司和初创企业正将大量资源投入到建造量子芯片上。

IBM量子计算机原型

回顾人工智能的发展历史,我们已看到人工智能的实际进步并不与其大肆宣传的期望同步的例子。

这种差距很大程度上是因为缺少训练和执行人工智能算法的计算能力而引起的。于是,紧随而来的便是两个人工智能冬天的出现,主要表现为资金投入枯竭和普遍的情绪波动。

如果我们在真正的“量子霸权”到来之前就达到了传统计算能力的极限,恐怕未来还会出现第三个人工智能的冬天。

人工智能研究人员正努力解决的问题日益复杂,并推动着我们去实现阿兰·图灵对人工通用人工智能的愿景。然而,仍存在大量工作要做。同时,没有量子计算的帮助,我们将很能实现人工智能的全部潜力。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 人工智能
    +关注

    关注

    1791

    文章

    46867

    浏览量

    237590
  • 量子计算
    +关注

    关注

    4

    文章

    1081

    浏览量

    34905

原文标题:傅里叶变换和拉普拉斯变换的物理解释及区别

文章出处:【微信号:ittbank,微信公众号:ittbank】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    嵌入式和人工智能究竟是什么关系?

    领域,如工业控制、智能家居、医疗设备等。 人工智能计算机科学的一个分支,它研究如何使计算机具备像人类一样思考、学习、推理和决策的能力。人工智能
    发表于 11-14 16:39

    《AI for Science:人工智能驱动科学创新》第6章人AI与能源科学读后感

    幸得一好书,特此来分享。感谢平台,感谢作者。受益匪浅。 在阅读《AI for Science:人工智能驱动科学创新》的第6章后,我深刻感受到人工智能在能源科学领域中的巨大潜力和广泛应用。这一章详细
    发表于 10-14 09:27

    《AI for Science:人工智能驱动科学创新》第一章人工智能驱动的科学创新学习心得

    周末收到一本新书,非常高兴,也非常感谢平台提供阅读机会。 这是一本挺好的书,包装精美,内容详实,干活满满。 《AI for Science:人工智能驱动科学创新》这本书的第一章,作为整个著作的开篇
    发表于 10-14 09:12

    人工智能计算是什么

    人工智能计算,简而言之,是指将人工智能技术与云计算平台相结合,利用云计算的强大计算力、存储能力
    的头像 发表于 10-12 09:46 171次阅读

    risc-v在人工智能图像处理应用前景分析

    RISC-V在人工智能图像处理领域的应用前景十分广阔,这主要得益于其开源性、灵活性和低功耗等特点。以下是对RISC-V在人工智能图像处理应用前景的详细分析: 一、RISC-V的基本特点 RISC-V
    发表于 09-28 11:00

    名单公布!【书籍评测活动NO.44】AI for Science:人工智能驱动科学创新

    ! 《AI for Science:人工智能驱动科学创新》 这本书便将为读者徐徐展开AI for Science的美丽图景,与大家一起去了解: 人工智能究竟帮科学家做了什么? 人工智能将如何改变我们所生
    发表于 09-09 13:54

    FPGA在人工智能中的应用有哪些?

    定制化的硬件设计,提高了硬件的灵活性和适应性。 综上所述,FPGA在人工智能领域的应用前景广阔,不仅可以用于深度学习的加速和云计算的加速,还可以针对特定应用场景进行定制化计算,为人工智能
    发表于 07-29 17:05

    【《计算》阅读体验】量子计算

    粒子组成),依然相当遥远. 量子的叠加态、纠缠性是量子计算强大的基础,尤其是量子的叠加态,可以发挥强大的并行性优势。计算是状态之间的转移,
    发表于 07-13 22:15

    5G智能物联网课程之Aidlux下人工智能开发(SC171开发套件V1)

    课程类别 课程名称 视频课程时长 视频课程链接 课件链接 人工智能 参赛基础知识指引 14分50秒 https://t.elecfans.com/v/25508.html *附件:参赛基础知识指引
    发表于 04-01 10:40

    量子计算机重构未来 | 阅读体验】+ 了解量子叠加原理

    作为零基础初学级的量子小白,对神秘诡异的量子世界充满了好奇。说起量子计算机,我有许多问号,量子计算
    发表于 03-13 17:19

    量子计算机重构未来 | 阅读体验】+量子计算机的原理究竟是什么以及有哪些应用

    计算方法的区别传统方法是,按照不走枚举所有情况,而量子计算是一次处理所有情况,是一步到位。但是这里又有疑惑了,量子计算如何实现的一步到位呢,
    发表于 03-11 12:50

    量子计算机重构未来 | 阅读体验】第二章关键知识点

    得出结论所需的时间。Grover算法则在非结构化检索上有突出的效率。作者同样提到了量子计算人工智能的梯度下降以及矩阵求逆运算上,也提高效率,但并未深入描述原理。 作者提到了目前
    发表于 03-06 23:17

    量子计算机重构未来 | 阅读体验】+ 初识量子计算

    大语言模型训练会是一个怎样的情景。。。。。。 希望量子计算机尽快走出实验室,能够早日进入寻常百姓家,更希望我国的量子计算机取得突破,蓬勃发展,也
    发表于 03-05 17:37

    嵌入式人工智能的就业方向有哪些?

    嵌入式人工智能的就业方向有哪些? 在新一轮科技革命与产业变革的时代背景下,嵌入式人工智能成为国家新型基础建设与传统产业升级的核心驱动力。同时在此背景驱动下,众多名企也纷纷在嵌入式人工智能领域布局
    发表于 02-26 10:17

    量子计算的冷酷现实检验

    Meta人工智能研究负责人Yann LeCun最近成为头条新闻,此前他对量子计算机在不久的将来做出有意义贡献的前景泼了一盆冷水。在庆祝Meta基础人工智能研究(Fundamental
    的头像 发表于 01-12 16:50 820次阅读