0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

基于最近将深度强化学习应用于迷宫导航的研究

zhKF_jqr_AI 来源:未知 作者:李倩 2018-04-08 09:06 次阅读

在每个人的童年时期,我们是如何学会记住自己家附近的路的?我们是怎样学会自己去朋友家、学校或者去小卖部的?在没有地图的情况下,我们可能只是简单地记住了某条路长什么样,凭记忆引导自己。慢慢地,我们逐渐熟悉了自己的日常活动范围,就变得有信心了,能知道自己身在何处,并且学习了新的更复杂的道路。偶尔你可能会迷路,但是凭借某个标志甚至太阳你又能找到正确的路。

在非结构化的环境中导航是智能生物的特有的功能,想要实现远程导航,首先要对空间进行内部探索,然后要识别地标,同时还要有强大的视觉处理能力。基于最近将深度强化学习应用于迷宫导航的研究,DeepMind的研究人员也提出了一种端到端的深度强化学习方法,他们让智能体在真实的城市空间中导航,无需地图,并且这种方法还能迁移到不同城市环境。

导航是一项重要的认知任务,它能让人类和动物在没有地图的情况下,穿越过一片阡陌纵横的区域。这种远距离导航可以同时进行自我定位(我在这里)和目标表示(我要去那里)。

在Learning to Navigate in Cities Without a Map这篇论文里,我们展示了一种交互式导航环境,利用第一人称视角的谷歌街景照片做素材,将其游戏化以训练AI。标准的街景照片,人脸和车牌都被模糊,无法识别。我们建立了一个基于神经网络的智能体,学习使用视觉信息在多个城市中导航。注意,这项研究关注的是一般导航,而非驾驶导航;我们没有使用交通信息,也没有对车辆控制进行建模。

数据来源于真实街景。从左至右分别为纽约时代广场、中央公园和伦敦圣保罗大教堂

当智能体达到目的地时,它就会获得奖励(具体来说是一个经纬度坐标),就像一个没有地图的邮递员,要送无数的快递。随着时间的发展,智能体慢慢学会了用这种方法穿越整个城市。我们同样证明了智能体可以学习多个城市的道路,并且这种学习方法能有效迁移到新的城市中。

在没有地图的情况下学习导航

我们不使用传统的依赖外部映射和探索的传统方法,而是让智能体学习像人类一样导航,不用地图、GPS定位或其他辅助工具,只用视觉观察。我们创建了一个神经网络智能体,向其中输入在环境中观察到的图像,并预测它在该环境中执行的下一项操作。我们使用深度强化学习对其进行端到端训练,类似最近让智能体在复杂的3D迷宫中学习导航的研究,以及用无监督辅助方法玩游戏。与迷宫不同,我们利用真实的城市数据,例如伦敦、巴黎和纽约的复杂交叉路口、人行道、隧道和各种城市道路。此外,我们使用的方法可以迁移到不同城市,并可以优化导航行为。

模块化神经网络

我们智能体的神经网络包括三个部分:

能够处理图像并提取视觉特征的卷积网络

一个特定场所的循环神经网络,在内部进行对环境的记忆并学习表示“这里”(智能体的当前位置)和“那里”(目标位置);

一个位置不变的循环网络,能够根据智能体位置的变化进行导航。

特定场所的模块被设计成可互换的,并且正如其名,对于每个城市都是唯一的,而视觉模块和策略模块是不随着场景而变换的。

就像谷歌街景的界面一样,智能体可以在原地打转,也可以向前进入到下一个场景。但与谷歌地图和街景不同的是,智能体看不到小箭头、局部或全景地图以及标志性的街景小人,它还需要学习区分开放道路和人行道。目的地可能是几公里以外的地方,智能体需要搜索几百个全景图才能到达。

我们证明了这种方法能提供一种机制,将导航知识迁移到新城市中。和人类一样,当智能体来到一个新城市,我们会希望它学习一组新的地标,但不必重新学习它的视觉表现或行为(例如,沿着街道向前缩放,或者在交叉路口转向)。因此,使用MultiCity架构,我们在许多城市进行首次训练,然后冻结策略网络和视觉卷积网络,并在一个新城市中建立唯一一个新的特定地区路径。这种方法让智能体在获取新知识的同时不忘之前学到的东西,类似渐进式神经网络架构。

学习导航是人工智能领域的基础,试图在智能体中复制导航功能还可以帮助科学家了解其生物学基础。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 神经网络
    +关注

    关注

    42

    文章

    4765

    浏览量

    100575
  • 导航
    +关注

    关注

    7

    文章

    523

    浏览量

    42387
  • 人工智能
    +关注

    关注

    1791

    文章

    46909

    浏览量

    237701

原文标题:无需地图,DeepMind让智能体在城市中自我导航

文章出处:【微信号:jqr_AI,微信公众号:论智】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    蚂蚁集团收购边塞科技,吴翼出任强化学习实验室首席科学家

    领域的研究与发展。令人瞩目的是,边塞科技的创始人吴翼已正式加入该实验室,并担任首席科学家一职。 吴翼在其个人社交平台上对这一变动进行了回应。他表示,自己最近接受了蚂蚁集团的邀请,负责大模型强化学习领域的
    的头像 发表于 11-22 11:14 371次阅读

    如何使用 PyTorch 进行强化学习

    强化学习(Reinforcement Learning, RL)是一种机器学习方法,它通过与环境的交互来学习如何做出决策,以最大化累积奖励。PyTorch 是一个流行的开源机器学习库,
    的头像 发表于 11-05 17:34 234次阅读

    GPU深度学习应用案例

    能力,可以显著提高图像识别模型的训练速度和准确性。例如,在人脸识别、自动驾驶等领域,GPU被广泛应用于加速深度学习模型的训练和推理过程。 二、自然语言处理 自然语言处理(NLP)是深度
    的头像 发表于 10-27 11:13 337次阅读

    谷歌AlphaChip强化学习工具发布,联发科天玑芯片率先采用

    近日,谷歌在芯片设计领域取得了重要突破,详细介绍了其用于芯片设计布局的强化学习方法,并将该模型命名为“AlphaChip”。据悉,AlphaChip有望显著加速芯片布局规划的设计流程,并帮助芯片在性能、功耗和面积方面实现更优表现。
    的头像 发表于 09-30 16:16 391次阅读

    FPGA做深度学习能走多远?

    ,FPGA 也需要不断适应和改进。研究人员和开发者致力于针对 FPGA 的特点对深度学习算法进行优化,例如探索更高效的模型压缩方法、量化技术以及硬件友好的算法结构等,以进一步提高 F
    发表于 09-27 20:53

    利用Matlab函数实现深度学习算法

    在Matlab中实现深度学习算法是一个复杂但强大的过程,可以应用于各种领域,如图像识别、自然语言处理、时间序列预测等。这里,我概述一个基本的流程,包括环境设置、数据准备、模型设计、训
    的头像 发表于 07-14 14:21 1953次阅读

    深度学习中的时间序列分类方法

    时间序列分类(Time Series Classification, TSC)是机器学习深度学习领域的重要任务之一,广泛应用于人体活动识别、系统监测、金融预测、医疗诊断等多个领域。随
    的头像 发表于 07-09 15:54 745次阅读

    深度学习与nlp的区别在哪

    深度学习和自然语言处理(NLP)是计算机科学领域中两个非常重要的研究方向。它们之间既有联系,也有区别。本文介绍深度
    的头像 发表于 07-05 09:47 826次阅读

    基于深度学习的小目标检测

    在计算机视觉领域,目标检测一直是研究的热点和难点之一。特别是在小目标检测方面,由于小目标在图像中所占比例小、特征不明显,使得检测难度显著增加。随着深度学习技术的快速发展,尤其是卷积神经网络(CNN
    的头像 发表于 07-04 17:25 776次阅读

    深度学习常用的Python库

    深度学习作为人工智能的一个重要分支,通过模拟人类大脑中的神经网络来解决复杂问题。Python作为一种流行的编程语言,凭借其简洁的语法和丰富的库支持,成为了深度学习
    的头像 发表于 07-03 16:04 583次阅读

    通过强化学习策略进行特征选择

    更快更好地学习。我们的想法是找到最优数量的特征和最有意义的特征。在本文中,我们介绍并实现一种新的通过强化学习策略的特征选择。我们先讨论强化学习,尤其是马尔可夫决策
    的头像 发表于 06-05 08:27 327次阅读
    通过<b class='flag-5'>强化学习</b>策略进行特征选择

    深度解析深度学习下的语义SLAM

    随着深度学习技术的兴起,计算机视觉的许多传统领域都取得了突破性进展,例如目标的检测、识别和分类等领域。近年来,研究人员开始在视觉SLAM算法中引入深度
    发表于 04-23 17:18 1248次阅读
    <b class='flag-5'>深度</b>解析<b class='flag-5'>深度</b><b class='flag-5'>学习</b>下的语义SLAM

    FPGA在深度学习应用中或取代GPU

    对神经网络进行任何更改,也不需要学习任何新工具。不过你可以保留你的 GPU 用于训练。” Zebra 提供了深度学习代码转换为 FPGA
    发表于 03-21 15:19

    一文详解Transformer神经网络模型

    Transformer模型在强化学习领域的应用主要是应用于策略学习和值函数近似。强化学习是指让机器在与环境互动的过程中,通过试错来学习最优的
    发表于 02-20 09:55 1.3w次阅读
    一文详解Transformer神经网络模型

    详解深度学习、神经网络与卷积神经网络的应用

    处理技术也可以通过深度学习来获得更优异的效果,比如去噪、超分辨率和跟踪算法等。为了跟上时代的步伐,必须对深度学习与神经网络技术有所学习
    的头像 发表于 01-11 10:51 1935次阅读
    详解<b class='flag-5'>深度</b><b class='flag-5'>学习</b>、神经网络与卷积神经网络的应用