0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

递归性质和大数目追踪光线解决方案

Dbwd_Imgtec 来源:互联网 作者:佚名 2018-04-13 09:10 次阅读

问题:

1、性能

算法的递归性质和大数目的追踪光线,渲染过程可能持续数小时。80-90%的渲染时间花费在计算光线和物体交点上。

2、走样

3、尖锐的阴影

基本的光线追踪算法只能得到尖锐的阴影(因为模拟的是点光源)。

4、局部光照和着色

算法只追踪少数目的光线,只有四种类型的光线被考虑在内,物体之间的漫反射光没有被考虑在内,即算法并不包括全局光照。

解决方案:

1、性能

  1. 使用更多或者更好的硬件

  2. 大规模并行计算。每一个光线都相互独立。将图像分割,分配在多核上或者分布式网络上;或者分配在多个线程上。

  3. 限制交点检测的数目。使用包围盒的层次关系。快速判断光线是否和一组物体相交。物体被分组在封闭的包围盒中。利用空间细分技术:octree,BSP,grid.

  4. 优化交点检测

  5. 限制追踪光线的数目,确定最大的递归层数。根据光线对当前像素点贡献值大小来限制递归深度。一个阈值用来确定后续光线由于对像素点贡献太小而不会被追踪。

2、走样

使用超采样(super sampling)、抗锯齿(antialiasing)、jittering

  1. 追踪额外的主光线并取平均值。即超采样,相对于每一个像素点取一条光线,你可以取特定数目的光线。每一个像素被分为亚像素,对每一个亚像素发射一条光线。当所有的亚像素点都处理完毕,对亚像素点的颜色值取平均值,并将其赋值给该像素点。这种方法大大增加了渲染时间。

  2. 自适应抗锯齿。在颜色剧烈变化的地方使用追踪的主光线,颜色变化不大的地方使用最少的主光线。

  3. 随机抗锯齿。随机取样代替常规取样。

3、尖锐的阴影

原因:使用点光源、每个交点仅仅对应一条阴影光线。

  1. 区域光(area light)。使用一系列点光源来模拟区域光源。对于每一个交点,需要和点光源数目一样多的追踪光线。

  2. Monte Carlo光线追踪法。使用随机超采样,光源建模成球形光源,阴影光线指向代表光源的球上面的点。阴影光线颜色的平均值决定该交点最终的颜色值。

4、全局光照

依旧可以使用Monte Carlo法。使用Radiosity算法。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 大数据
    +关注

    关注

    64

    文章

    8862

    浏览量

    137278
  • 光线追踪
    +关注

    关注

    0

    文章

    183

    浏览量

    21462

原文标题:举例几个光线追踪的问题和解决方案

文章出处:【微信号:Imgtec,微信公众号:Imagination Tech】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    解决方案】智慧用电解决方案

    解决方案】智慧用电解决方案
    的头像 发表于 11-11 01:00 74次阅读
    【<b class='flag-5'>解决方案</b>】智慧用电<b class='flag-5'>解决方案</b>

    基于光线追踪实现反射折射效果

    本文翻译自Scratchapixel3.0[1],是一个关于计算机图形学的系统性的学习教程。如果有误,欢迎在评论区讨论。光线追踪的另一个优点是,通过扩展光线传播的思想,我们可以非常容易地「模拟反射
    的头像 发表于 11-09 01:07 118次阅读
    基于<b class='flag-5'>光线</b><b class='flag-5'>追踪</b>实现反射折射效果

    基于光线追踪的渲染算法实现

    我们已经涵盖了所有需要说的内容!我们现在准备写我们的第一个光线追踪器。你现在应该能够猜到光线追踪算法是如何工作的了。首先,注意到自然界中光的传播只是从光源发出无数条射线,反弹直到它们撞
    的头像 发表于 10-30 08:06 205次阅读
    基于<b class='flag-5'>光线</b><b class='flag-5'>追踪</b>的渲染算法实现

    Python递归的经典案例

    当我们碰到诸如需要求阶乘或斐波那契数列的问题时,使用普通的循环往往比较麻烦,但如果我们使用递归时,会简单许多,起到事半功倍的效果。这篇文章主要和大家分享一些和递归有关的经典案例,结合一些资料谈一下个人的理解,也借此加深自己对递归
    的头像 发表于 08-05 15:57 273次阅读

    AMD光线追踪专家加盟高通,共筑Adreno GPU性能新高度

    在科技行业日新月异的今天,顶尖人才的流动往往预示着技术创新与突破的新篇章。近日,一则令人瞩目的消息在半导体与图形处理领域引起了广泛关注——AMD前光线追踪技术领域的杰出专家Paritosh
    的头像 发表于 07-11 10:03 549次阅读

    递归神经网络的实现方法

    递归神经网络(Recursive Neural Network,简称RNN)是一种特殊类型的神经网络,其特点在于能够处理具有层次或树状结构的数据,并通过递归的方式对这些数据进行建模。与循环神经网络
    的头像 发表于 07-10 17:02 273次阅读

    递归神经网络与循环神经网络一样吗

    递归神经网络(Recursive Neural Network,RvNN)和循环神经网络(Recurrent Neural Network,RNN)是两种不同类型的神经网络结构,它们在处理序列数据
    的头像 发表于 07-05 09:28 683次阅读

    递归神经网络是循环神经网络吗

    递归神经网络(Recurrent Neural Network,简称RNN)和循环神经网络(Recurrent Neural Network,简称RNN)实际上是同一个概念,只是不同的翻译方式
    的头像 发表于 07-04 14:54 623次阅读

    解码AI驱动的DLSS 3.5光线重建功能

    神经网络渲染器提高了光线追踪图像质量,使用可在采样光线之间生成更高质量像素的 AI 网络取代需要人工设计的降噪器。
    的头像 发表于 05-11 11:06 483次阅读
    解码AI驱动的DLSS 3.5<b class='flag-5'>光线</b>重建功能

    MediaTek携手望尘科技通过移动端光线追踪技术打造沉浸体育游戏体验

    MediaTek携手望尘科技(GALA Sports),在手游领域实现了光线追踪技术的革命性应用。该技术现已成功融入望尘科技旗下的钓鱼与篮球体育游戏中,极大地提升了玩家的视觉沉浸体验,让游戏画面更加逼真。
    的头像 发表于 05-07 11:39 663次阅读

    MediaTek携手望尘科技共同推进移动端光线追踪技术在手游中的应用落地

    MediaTek 与望尘科技(GALA Sports)携手合作,共同推进移动端光线追踪技术在手游中的应用落地,将该技术成功导入了望尘科技旗下的钓鱼和篮球体育在线类游戏,为玩家带来更具沉浸感的逼真游戏画面。
    的头像 发表于 04-18 10:04 354次阅读
    MediaTek携手望尘科技共同推进移动端<b class='flag-5'>光线</b><b class='flag-5'>追踪</b>技术在手游中的应用落地

    北斗短报文终端应急救救援边防巡逻解决方案

    北斗短报文终端解决方案是基于中国北斗卫星导航系统(BDS)的一种通信终端设备方案。该方案充分利用北斗卫星系统的短报文通信功能,实现无人地带的实时通信、实时追踪和实时监控。以下是该
    的头像 发表于 03-28 10:28 434次阅读

    微软:SSD固态硬盘可降低显存占用,提高光线追踪性能

    其专利说明如下:由于光线追踪加速结构常需占用其他数据存储空间(如几何图形和纹理数据),导致系统需大增内存负担,且所需带宽大。本文方法旨在缓解这一问题。
    的头像 发表于 03-25 15:46 512次阅读

    关于C语言中的递归

    递归指的是在函数的定义中使用函数自身的方法。
    发表于 02-26 10:34 335次阅读
    关于C语言中的<b class='flag-5'>递归</b>

    追踪器arduino原理

    追踪器 (LDR) 是一种基于光敏电阻的光测量器件,常用于测量光强度和控制感应器。在 Arduino 上使用 LDR,可以实现对光线进行检测、测量和控制的功能。本文将详细介绍 LDR
    的头像 发表于 12-08 10:22 1401次阅读