0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

一种新颖、高效且易于计算的结构性度量来评估非二进制前景图

DPVg_AI_era 来源:未知 作者:李倩 2018-04-17 15:47 次阅读

南开大学媒体计算实验室等研究团队从人类视觉系统对场景结构非常敏感的角度出发,提出一种新颖、高效且易于计算的结构性度量(S-measure) 来评估非二进制前景图,进而使得评估不需要像传统AUC曲线那样通过繁琐且不可靠的多阈值化来计算精度、召回率,仅通过简单的计算(5.3ms)就可以得到非常可靠的评价结果,成为该领域第一个简单的专用评价指标。相关研究已被ICCV 2017录用为spotlight paper,第一作者南开大学博士生范登平带来详细解读。

前景图的度量对于物体分割算法的发展有着重要的作用,特别是在物体检测领域,其目的是在场景中精确地检测和分割出物体。但是,当前广泛应用的评估指标 (AP, AUC) 都是基于像素级别的误差度量,缺少结构相似性度量,从而导致评估不准确(优秀算法排名比拙劣算法靠后)进而影响了领域的发展。

天津南开大学媒体计算实验室、美国中佛罗里达大学机构的联合研究团队从人类视觉系统对场景结构非常敏感的角度出发,提出基于区域(Region-aware)和基于对象(Object-aware)的结构性度量(S-measure)方法来评估非二进制前景图,进而使得评估更加可靠。该方法在5个基准数据集上采用5个元度量证明了新度量方法远远优于已有的度量方法,并且和人的主观评价具有高度一致性(77%Ours VS. 23%AUC)。

问题引出:专门评价指标缺陷

评价指标的合理与否对一个领域中模型的发展起到决定性的作用,现有的前景图检测中应用最广泛的评价指标为:平均精度AP(average precision)和曲线下的面积AUC(area under the curve)。在评价非二进制前景图时,需要将输入图像进行阈值化得到多个阈值,再计算精度(precision)和召回率(recall)。

图1

然而,该方法已经被证明[1]存在天然的缺陷。例如图1中(a)和(b)是两个完全不同的前景图,但是经过阈值化计算AP和AUC后,最后的评价结果是AP=1, AUC=1。这表示两个前景图的检测效果相当,这显然不合理。

图2

再来看另外一个实际的例子,图2中,根据应用排序(Application Ranking)以及人为排序(Human Ranking)认为蓝色框的检测结果由于红色框。然而,如图3所示,采用阈值化、再进行插值的方法(AUC)会评判红色框检测结果由于蓝色框。

图3

因此,AUC评价方法完全依赖于插值的结果,忽略了错误发生的位置,也没有考虑到对象的结构性度量。原因在于,AUC曲线是多个领域通用的评价指标,前景图检测领域还没有一个简单高效的专有指标。为此,有必要为该领域设计一个专门的简单可靠的评价指标。

解决方案:面向区域和面向对象的结构度量

由于当前的评价指标都是考虑单个像素点的误差,缺少结构相似性度量,从而导致评估不准确。为此,研究团队根据人类视觉系统对场景结构非常敏感的角度出发,分别从2个角度去解决结构度量的问题。

如图4所示:(a)面向区域(Region-aware)结构度量和(b)面向对象(Object-aware)结构度量。

图4

面向区域的结构度量将区域的前背景整体度量,作为面向对象(前背景分离度量)的补充,进而为可靠的整体结构度量提供支撑。

在计算面向区域部分,首先延着Ground-truth的重心部分采取2*2分块法切割开,相应地为检测结果图切割,这样得到4局部块,后每块相似性度量方法采用著名的结构性评价指标SSIM来度量。最后,根据每个分块占整个前景图的比例进行自适应加权求和得到面向区域的结构相似度

b.面向对象的结构度量从物体角度出发,将前背景分离度量,与面向区域(前背景聚合成区域)互为补充,为度量对象级别的结构提供保障。

通过大量的研究发现,高质量的前景图检测结果具有如下特性:

前景与背景形成强烈的亮度对比。

前景与背景部分都近似均匀分布。

如图5所示,result1检测结果中对象内部和背景部分相对均匀,唯独亮度对比不够强烈,result2检测结果中内部对象分布不均匀,背景部分大体均匀。

图5

研究团队通过设计一个简单的亮度差异和均匀性项来度量结构相似性。

元度量实验证明有效性

为了证明指标的有效性和可靠性,研究人员采用元度量的方法来进行实验。通过提出一系列合理的假设,然后验证指标符合这些假设的程度就可以得到指标的性能。简而言之,元度量就是一种评测指标的指标。实验采用了5个元度量:

元度量1:应用排序

推动模型发展的一个重要原因就是应用需求,因此一个指标的排序结果应该和应用的排序结果具有高度的一致性。即,将一系列前景图输入到应用程序中,由应用程序得到其标准前景图的排序结果,一个优秀的评价指标得到的评价结果应该与其应用程序标准前景图的排序结果具有高度一致性。如下图6所示。

图6

元度量2:最新水平 vs.随机结果

一个指标的评价原则应该倾向于选择那些采用最先进算法得到的检测结果而不是那些没有考虑图像内容的随机结果(例如中心高斯图)。如下图7所示。

图7

元度量3:参考GT随机替换

原来指标认定为检测结果较好的模型,在参考的Ground-truth替换为错误的Ground-truth时,分数应该降低。如图8所示。

图8

元度量4:轻微标注错误

评价指标应该具有鲁棒性,一个好的评价指标不应对GT边界轻微的手工标注误差敏感。如图9所示

图9

元度量5:人工排序

人作为高级灵长类动物,擅长捕捉对象的结构,因此前景图检测的评价指标的排序结果,应该和人的主观排序具有高度一致性。我们通过收集45个不同年龄,学历,性别,专业背景的受试者的排序结果进一步证明了提出的评价指标与人的评价具有高度的一致性(最高可达77%)。下图10所示为用户调研的手机平台。

图10

实验结果

为了公平的比较,指标首先在公开的一个前景图检测数据集ASD[3]上对4个元度量进行评测。评测结果显示我们的结果取得了最佳性能:

除了在基准数据集上进行评测外,还在另外4个具有不同特点的、更具挑战性数据集上进行了广泛的测试,以验证指标的稳定性、鲁棒性。

实验结果表明:我们的指标分别在PASCAL, ECSSD, SOD和HKU-IS数据集上比排名第二的指标错误率降低了67.62%,44.05%,17.81%,69.23%。这清楚地表明新的指标具有更强的鲁棒性和稳定性。

总结

该评测指标将很快出现在标准的Opencv库以及Matlab中,届时可以直接调用。

评测指标的代码计算简单,仅需对均值、方差进行加减乘除即可,无需阈值256次得到多个精度和召回率,再画进行繁琐的插值计算得到AUC曲线。因此,S-measure计算量非常小,在单线程CUP(4GHz)上度量一张图像仅需要5.3ms.

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 二进制
    +关注

    关注

    2

    文章

    795

    浏览量

    41643
  • 图像
    +关注

    关注

    2

    文章

    1083

    浏览量

    40449

原文标题:南开大学提出新物体分割评价指标,相比经典指标错误率降低 69.23%

文章出处:【微信号:AI_era,微信公众号:新智元】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    二进制

    二进制   二进制与十进制的区别在于数码的个数和进位规律有很大的区别,顾名思义,二进制的计数规律为逢二进一,是以2为基数的计数体制。10这
    发表于 04-06 23:48 8195次阅读
    <b class='flag-5'>二进制</b>

    二进制编码和二进制数据

    二进制编码和二进制数据   二进制编码是计算机内使用最多的码制,它只使用两个基本符号"0"和"1",并且通过由这两个符号组成的
    发表于 10-13 16:22 4782次阅读

    二进制电平,什么是二进制电平

    二进制电平,什么是二进制电平 在二进制数字通信系统中,每个码元或每个符号只能是“1”和“0”两个状态之。若将每个码元可能取的状态增
    发表于 03-17 16:51 2357次阅读

    二进制加法程序【汇编版】

    二进制加法程序【汇编版】二进制加法程序【汇编版】二进制加法程序【汇编版】二进制加法程序【汇编版】
    发表于 12-29 11:02 0次下载

    一种二进制校正的10位100MS_sSARADC

    一种二进制校正的10位100MS_sSARADC_倪亚波
    发表于 01-07 21:45 0次下载

    二进制”中的新结构

    SAR开关时序的二进制结构
    发表于 04-05 16:08 5次下载

    二进制数据压缩算法

    二进制数据压缩算法二进制计算技术中广泛采用的一种数制。二进制数据是用0和1两个数码表示的数。
    的头像 发表于 02-28 09:31 2w次阅读

    二进制数转换成bcd码

    二进制计算技术中广泛采用的一种数制。二进制数据是用0和1两个数码表示的数。它的基数为2,进位规则是“逢
    的头像 发表于 11-22 07:01 1.2w次阅读

    二进制数据及取值范围的计算方法

    本文介绍二进制数据的相关知识,如定义、取值范围计算、转换为十进制的方法以及些常见位数的二进制数据的取值范围等。
    的头像 发表于 11-08 15:48 2170次阅读
    <b class='flag-5'>二进制</b>数据及取值范围的<b class='flag-5'>计算</b>方法

    二进制最佳接收原理 二进制最佳接收机的实现形式有哪两

    过来的数据。二进制最佳接收原理的实现形式主要分为两,分别是非相干接收和相干接收。接下来,我将详细介绍这两实现形式以及它们的工作原理。 相干接收是
    的头像 发表于 11-27 16:19 1025次阅读

    10进制转换为二进制的算法

    进制转换为二进制计算机科学中非常基础重要的概念之。在理解和应用计算机科学的基础知识时,掌
    的头像 发表于 01-15 10:32 3257次阅读

    如何实现二进制和BCD码数据的相互转变?

    如何实现二进制和BCD码数据的相互转变? 二进制码是将十进制数字表示为二进制数和十进制数的一种
    的头像 发表于 02-18 14:51 3524次阅读

    二进制编码器工作原理 如何选择二进制编码器

    二进制编码器是一种数字电路,它将输入的二进制代码转换为对应的输出信号。在数字系统中,编码器用于将数据从一种形式转换为另一种形式,以便于处理和
    的头像 发表于 11-06 09:44 662次阅读

    二进制编码器应用场景 二进制编码器与模拟编码器比较

    限性。 二进制编码器概述 二进制编码器是一种将输入信号转换为二进制代码的设备。它通常用于数字系统中,将模拟信号或
    的头像 发表于 11-06 09:45 386次阅读

    hex格式和二进制的区别

    。 它以ASCII文本形式表示的十六进制数据,每两个十六进制字符对应个字节。 HEX文件包含了记录类型、数据长度、地址、数据以及校验和等信息,具有结构
    的头像 发表于 11-18 15:24 450次阅读