0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

阿里苦心研发Ali-NPU,AI芯片哪种跟具优势

mK5P_AItists 来源:未知 作者:胡薇 2018-04-23 17:57 次阅读

4月19日,有消息称,阿里巴巴达摩院正在研发一款神经网络芯片——Ali-NPU,主要运用于图像视频分析、机器学习AI推理计算。按照设计,这款芯片性能将是目前市面上主流CPUGPU架构AI芯片的10倍,而制造成本和功耗仅为一半,其性价比超过40倍。

事实上,随着人工智能产业的发展,CPU、GPU、TPU、DPU、NPU、BPU……各种PU也开始爆发式出现。那么,究竟这些PU在性能和使用上有何异同,又有哪些优劣呢?

CPU:计算力占据部分很小 擅长逻辑控制

CPU是最为普遍,最为常见的中央处理器。主要包括运算器(ALU)和控制单元(CU),除此之外还包括若干寄存器、高速缓存器和它们之间通讯的数据、控制及状态的总线。依循冯诺依曼架构,CPU需要大量空间放置存储单元和控制逻辑,计算能力只占据很小的部分,更擅长逻辑控制。

CPU结构简化图

GPU:计算单元数量众多 但无法单独使用

GPU的诞生可以解决CPU在计算能力上的天然缺陷。采用数量众多的计算单元和超长的流水线,善于处理图像领域的运算加速。但GPU的缺陷也很明显,即无法单独工作,必须由CPU进行控制调用才能工作。

CPU、GPU微架构对比图

TPU:高性能低功耗 然则开发周期长、转换成本高

谷歌专门为 TensorFlow 深度学习框架定制的TPU,是一款专用于机器学习的芯片。TPU可以提供高吞吐量的低精度计算,用于模型的前向运算而不是模型训练,且能效更高。但它的缺陷主要是开发周期长、可配置性能有限,缺乏灵活性且转换成本高。

DPU:可实现快速开发与产品迭代

国际上,Wave Computing最早提出DPU。在国内,DPU最早是由深鉴科技提出,是基于Xilinx可重构特性的FPGA芯片,设计专用深度学习处理单元,且可以抽象出定制化的指令集和编译器,从而实现快速的开发与产品迭代。

深鉴“雨燕”DPU平台

NPU:运行效率提升 不支持大样本训练

NPU是神经网络处理器,在电路层模拟人类神经元和突触,并且用深度学习指令集直接处理大规模的神经元和突触,一条指令完成一组神经元的处理。相比于CPU和GPU的冯诺伊曼结构,NPU通过突触权重实现存储和计算一体化,从而提高运行效率。但NPU也有自身的缺陷,比如不支持对大量样本的训练。

BPU:比在CPU上用软件实现更为高效 不可再编程

BPU是由地平线主导的嵌入式处理器架构。第一代是高斯架构,第二代是伯努利架构,第三代是贝叶斯架构。BPU主要是用来支撑深度神经网络,比在CPU上用软件实现更为高效。然而,BPU一旦生产,不可再编程,且必须在CPU控制下使用。

从CPU、GPU的市场来看,已经基本被英特尔英伟达AMD三分天下。而在ASIC框架下的TPU,只有谷歌的体量和实力才有开发专用加速的动力。

推出DPU的深鉴科技有清华和斯坦福双重学术背景,公司目前的两条发展路线是:以芯片技术为主的纯技术路线,以及基于技术的产品路线。其处理器做深度学习应用端,不做训练端。目前,其深度压缩技术可以将神经网络压缩数十倍而不影响精度,还可以使用芯片存储深度学习算法模型,减少内存读取次数,降低运行功耗。

去年底,地平线在创办两年后终于发布首款芯片——“征程”与“旭日”。目前,这两款处理器都属于嵌入式人工智能视觉芯片,分别面向智能驾驶和智能摄像头。2018年CES上,英特尔和地平线还发布了基于伯努利架构的新一代征程处理器,其发展路径图为:2018年,感知;2019年,建模;2020年,决策。

而因为与英特尔的合作,地平线不禁让市场联想到英特尔早前重金收购的Mobileye。在嵌入式人工智能领域,Mobileye是业界领头羊。地平线在英特尔的定位版图是否是中国版Mobileye?但其创始人余凯的抱负是,地平线是要做中国的英特尔。

相较而言,阿里在三家中最为热衷芯片布局,上述包括寒武纪、深鉴科技均有阿里参投。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 阿里巴巴
    +关注

    关注

    7

    文章

    1607

    浏览量

    47080
  • NPU
    NPU
    +关注

    关注

    2

    文章

    269

    浏览量

    18527

原文标题:“芯痛”之下阿里苦心研发NPU AI芯片究竟哪款PU更厉害?

文章出处:【微信号:AItists,微信公众号:人工智能学家】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    NPU在边缘计算中的优势

    和GPU相比,NPU在处理神经网络相关的计算任务时,能够提供更高的能效比和更快的处理速度。NPU通过优化数据流和计算结构,使得神经网络的前向传播和反向传播更加高效。 NPU在边缘计算中的优势
    的头像 发表于 11-15 09:13 165次阅读

    NPU技术如何提升AI性能

    随着人工智能技术的飞速发展,深度学习作为AI领域的核心驱动力,对计算能力的需求日益增长。NPU技术应运而生,为AI性能的提升提供了强大的硬件支持。 NPU技术概述
    的头像 发表于 11-15 09:11 165次阅读

    什么是NPU芯片及其功能

    在人工智能(AI)技术迅猛发展的今天,NPU芯片已经成为推动这一领域进步的关键技术之一。NPU芯片,即神经网络处理单元,是一种专门为深度学习
    的头像 发表于 11-14 15:48 142次阅读

    小鹏汽车2024 AI科技日:图灵AI芯片进展公布,预计AI汽车市场将迎来巨变

    在11月6日下午的2024小鹏AI科技日上,小鹏汽车揭晓了其图灵AI芯片的最新研发成果。小鹏汽车强调,这款图灵芯片是专为
    的头像 发表于 11-07 14:56 701次阅读

    什么是NPU?什么场景需要配置NPU

    处理AI任务上的效率更高,在现今ARM主板配置中也变得越来越重要。本文将带大家了解 NPU 的作用、必要性,以及国产芯片厂商是如何对它进行布局的。
    的头像 发表于 10-11 10:13 879次阅读
    什么是<b class='flag-5'>NPU</b>?什么场景需要配置<b class='flag-5'>NPU</b>?

    阿里Ali266解码器助力高通AI PC首播H.266超高清

     9月20日,最新科技动态传来,国际广播电视展(IBC)圆满落幕,高通技术公司在展会中大放异彩,展示了其携手阿里巴巴自研解码器Ali266打造的高性能视频解码方案。这一创新方案在搭载骁龙X
    的头像 发表于 09-20 14:20 577次阅读

    AI芯片的混合精度计算与灵活可扩展

    NPU、DSP等。   而无论是哪种架构,如何判断其性能优劣都至关重要,而这就涉及到AI芯片的各项性能指标,如算力、能效、时延等。其中AI
    的头像 发表于 08-23 00:08 4620次阅读

    刷新AI PC NPU算力,AMD锐龙AI 9 HX 375领衔55 TOPS

    电子发烧友网报道(文/黄晶晶)最近AMD官网上线了锐龙AI 300系列中的最新成员锐龙AI 9 HX 375处理器。原本Ryzen AI 9 HX 370的NPU达到了50 TOPS,
    的头像 发表于 08-07 00:28 3195次阅读
    刷新<b class='flag-5'>AI</b> PC <b class='flag-5'>NPU</b>算力,AMD锐龙<b class='flag-5'>AI</b> 9 HX 375领衔55 TOPS

    esp-ali-smartliving SDK功能OTA升级失败的原因?

    芯片:esp-8266EX ESP8266_RTOS_SDK:v3.3 github:https://github.com/espressif/esp-ali-smartliving.git 示例
    发表于 06-28 08:50

    AI PC引发的NPU大战?英特尔:仅30%开发者选择NPU

    随着COMPUTEX 2024的日益临近,关于人工智能(AI)个人计算机(PC)的话题开始变得愈发热门和受关注。据微软公司近期发布的相关技术规范要求,所有运行Windows操作系统的AI PC必须配备本地运行Copilot的功能机制,并安装容量至少为40 TOPS的神经网
    的头像 发表于 06-03 17:24 829次阅读

    高通NPU和异构计算提升生成式AI性能 

    异构计算的重要性不可忽视。根据生成式AI的独特需求和计算负担,需要配备不同的处理器,如专注于AI工作负载的定制设计的NPU、CPU和GPU。
    的头像 发表于 03-06 14:15 716次阅读

    采用芯原NPU IP的AI芯片已在全球出货超过1亿颗

    芯原股份发布重要消息,其集成了芯原神经网络处理器(NPU)IP的人工智能(AI)类芯片,已在全球范围内出货超过1亿颗。这一里程碑式的成就标志着芯原在AI领域的持续领先和创新。
    的头像 发表于 03-06 10:54 784次阅读

    采用芯原NPU IP的AI芯片已在全球出货超过1亿颗

    芯原股份(芯原,股票代码:688521.SH)今日宣布集成了芯原神经网络处理器(NPU)IP的人工智能(AI)类芯片已在全球范围内出货超过1亿颗,主要应用于物联网、可穿戴设备、智慧电视、智慧家居、安
    的头像 发表于 02-29 10:26 397次阅读

    AI服务器增长拉动PC DRAM需求,2024年全球AI服务器数量将破160万台

    TrendForce指出,想要满足微软AI PC所要求的40 TOPS算力基础,需同时具备两个条件:微软凭借Windows操作系统和Office软件等优势推进Copilot应用;以及芯片制造商如英特尔,
    的头像 发表于 01-18 09:36 675次阅读

    OpenAI重金押注的 “类脑” AI芯片,到底是什么?

    Rain AI 是一家 AI 芯片初创公司,旨在大幅降低 AI 算力的成本。通过研发一种模仿人脑的工作方式的
    的头像 发表于 12-10 14:45 903次阅读
    OpenAI重金押注的 “类脑” <b class='flag-5'>AI</b><b class='flag-5'>芯片</b>,到底是什么?