0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

用GPU加速的深度学习,提高冰雹预测能力

NVIDIA英伟达企业解决方案 来源:未知 作者:胡薇 2018-04-27 09:43 次阅读

想象一下,数以万计的高尔夫球以超过每小时100英里的速度从天而降会是怎样的情形,而冰雹所能造成的破坏正与其相当。

在短短几分钟的时间内,冰雹就会摧毁庄稼,让车身凹陷,粉碎挡风玻璃,甚至会让房屋和建筑物伤痕累累,造成数十亿美元的损失。

“由于冰雹有很大的破坏性,我们希望能够更准确地对它进行预测,从而提前做好防御,避免人身及财产损害,”美国国家大气研究中心(NCAR)博士后研究员David Gagne II说道。

为更准确地预测冰雹可能发生的地点以及冰雹大小,Gagne与NCAR的其他科学家正在使用GPU加速的深度学习进行研究。

目前冰雹预测能力不足

当雷暴中的上升气流强到足以将水滴带到结冰层以上的高空时,冰雹便会产生。这些冻结的水滴变成冰雹,且会随着水分冻结的增加而不断变大。当冰雹太重以致上升气流无法托住时,它们便会降落到地面。

Gagne指出,气象学家与其他科学家有多种预测风暴的方法,但是这些方法均存在缺陷,可能会导致风暴预测漏报与误报的情况。科学家们也曾尝试基于机器学习进行预测。

Gagne表示:“机器学习可对恶劣天气进行准确预测,但它需要不断努力学习空间格局。”这些格局可显示哪些地区会受到降雨或冰雹的影响。

AI预测潜能

根据Gagne及其他科学家在《American Meteorological Society》期刊上发表的一篇论文,相比之下,将空间格局、时间、以及对条件的物理理解集成至深度学习模型之中更为容易。

AI还可能从数据中发现新知识,例如从多普勒雷达地图(即电视上的天气预报中所显示的彩色地图)所示数据中得出结论。

“我想知道通过深度学习能否看到这些图像,看到气象学家所看到的情况,或者通过深度学习是否能发现某些不同的现象。”Gagne说道。

冰雹使车身凹陷。科学家希望通过更精准的冰雹预测,让人们(以及他们的车)能够及时转移到风暴范围以外的保护区。

预测可破坏车身的冰雹

Gagne与其团队使用NVIDIA Tesla GPU与cuDNN加速的TensorFlow深度学习框架,训练他们的模型预测直径大于25毫米或约四分之一英寸大小的冰雹。

Gagne说:“这就是足以导致汽车凹陷或屋顶损坏的冰雹尺寸。”

在迄今为止的实验中,相比其他模型而言,他们的模型通常误报率更低、准确性更高。Gagne 说,更准确的冰雹预测可让人们有充足的时间转移到保护区,将车辆停到风暴范围之外,也可让机场及时改变飞机航线或取消航班。

Gagne与其他科学家同时也在利用AI进行预测降水类型、强风及风暴持续时间的试验。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • gpu
    gpu
    +关注

    关注

    28

    文章

    4672

    浏览量

    128551
  • AI
    AI
    +关注

    关注

    87

    文章

    29740

    浏览量

    268037

原文标题:冰雹预测:用深度学习提高破坏性风暴预测准确度

文章出处:【微信号:NVIDIA-Enterprise,微信公众号:NVIDIA英伟达企业解决方案】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    PyTorch GPU 加速训练模型方法

    深度学习领域,GPU加速训练模型已经成为提高训练效率和缩短训练时间的重要手段。PyTorch作为一个流行的
    的头像 发表于 11-05 17:43 383次阅读

    Pytorch深度学习训练的方法

    掌握这 17 种方法,最省力的方式,加速你的 Pytorch 深度学习训练。
    的头像 发表于 10-28 14:05 114次阅读
    Pytorch<b class='flag-5'>深度</b><b class='flag-5'>学习</b>训练的方法

    如何提高GPU性能

    学习和机器学习等领域发挥着重要作用。 1. 硬件升级 a. 更换高性能GPU 最直接的提高GPU性能的方法是升级到更高性能的显卡。随着技术的
    的头像 发表于 10-27 11:21 149次阅读

    GPU深度学习应用案例

    能力,可以显著提高图像识别模型的训练速度和准确性。例如,在人脸识别、自动驾驶等领域,GPU被广泛应用于加速深度
    的头像 发表于 10-27 11:13 275次阅读

    GPU加速计算平台是什么

    GPU加速计算平台,简而言之,是利用图形处理器(GPU)的强大并行计算能力加速科学计算、数据分析、机器
    的头像 发表于 10-25 09:23 186次阅读

    FPGA加速深度学习模型的案例

    FPGA(现场可编程门阵列)加速深度学习模型是当前硬件加速领域的一个热门研究方向。以下是一些FPGA加速
    的头像 发表于 10-25 09:22 97次阅读

    深度学习GPU加速效果如何

    图形处理器(GPU)凭借其强大的并行计算能力,成为加速深度学习任务的理想选择。
    的头像 发表于 10-17 10:07 135次阅读

    FPGA做深度学习能走多远?

    并行计算的能力,可以在硬件层面并行处理大量数据。这种并行处理能力使得 FPGA 在执行深度学习算法时速度远超传统处理器,能够提供更低的延迟和更高的吞吐量,从而
    发表于 09-27 20:53

    深度学习中的时间序列分类方法

    时间序列分类(Time Series Classification, TSC)是机器学习深度学习领域的重要任务之一,广泛应用于人体活动识别、系统监测、金融预测、医疗诊断等多个领域。随
    的头像 发表于 07-09 15:54 634次阅读

    新手小白怎么学GPU云服务器跑深度学习?

    新手小白想用GPU云服务器跑深度学习应该怎么做? 个人主机通常pytorch可以跑但是LexNet,AlexNet可能就直接就跑不动,如何实现更经济便捷的实现
    发表于 06-11 17:09

    FPGA在深度学习应用中或将取代GPU

    基础设施,人们仍然没有定论。如果 Mipsology 成功完成了研究实验,许多正受 GPU 折磨的 AI 开发者将从中受益。 GPU 深度学习面临的挑战 三维图形是
    发表于 03-21 15:19

    冰球的不同尺寸与温度速度对冰雹冲击试验的影响

    在光伏系统的运行过程中,组件面临各种环境挑战,其中就包括冰雹。当冰雹以高速撞击组件表面时,可能对光伏系统造成严表面破损、电池损伤、连接线断裂等严重影响。因此,了解冰雹对组件的影响和组件的抗冲击
    的头像 发表于 03-19 08:31 852次阅读
    冰球的不同尺寸与温度速度对<b class='flag-5'>冰雹</b>冲击试验的影响

    家居智能化,推动AI加速器的发展

    提高了系统的运算能力和数据处理能力,还为用户带来了更加智能化、个性化的生活体验。   AI 加速器的发展   在人工智能和机器学习任务变得日
    的头像 发表于 02-23 00:18 4505次阅读

    如何基于深度学习模型训练实现圆检测与圆心位置预测

    Hello大家好,今天给大家分享一下如何基于深度学习模型训练实现圆检测与圆心位置预测,主要是通过对YOLOv8姿态评估模型在自定义的数据集上训练,生成一个自定义的圆检测与圆心定位预测
    的头像 发表于 12-21 10:50 1668次阅读
    如何基于<b class='flag-5'>深度</b><b class='flag-5'>学习</b>模型训练实现圆检测与圆心位置<b class='flag-5'>预测</b>

    GPU深度学习中的应用与优势

    学习中究竟担当了什么样的角色?又有哪些优势呢?一、GPU加速深度学习训练并行处理GPU的核心理念
    的头像 发表于 12-06 08:27 1183次阅读
    <b class='flag-5'>GPU</b>在<b class='flag-5'>深度</b><b class='flag-5'>学习</b>中的应用与优势