0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

过拟合的概念和用几种用于解决过拟合问题的正则化方法

zhKF_jqr_AI 来源:未知 作者:李倩 2018-04-27 15:23 次阅读

在日常工作、学习中,数据科学家最常遇到的问题之一就是过拟合。你是否曾有过这样一个模型,它在训练集上表现优秀,在测试集上却一塌糊涂。你是否也曾有过这样的经历,当你参加建模竞赛时,从跑分上看你的模型明明应该高居榜首,但在赛方公布的成绩榜上,它却名落孙山,远在几百名之后。如果你有过类似经历,那本文就是专为写的——它会告诉你如何避免过拟合来提高模型性能。

在这篇文章中,我们将详细讲述过拟合的概念和用几种用于解决过拟合问题的正则化方法,并辅以Python案例讲解,以进一步巩固这些知识。注意,本文假设读者具备一定的神经网络、Keras实现的经验。

什么是正则化

在深入探讨这个话题之前,请看一下这张图片:

每次谈及过拟合,这张图片就会时不时地被拉出来“鞭尸”。如上图所示,刚开始的时候,模型还不能很好地拟合所有数据点,即无法反映数据分布,这时它是欠拟合的。而随着训练次数增多,它慢慢找出了数据的模式,能在尽可能多地拟合数据点的同时反映数据趋势,这时它是一个性能较好的模型。在这基础上,如果我们继续训练,那模型就会进一步挖掘训练数据中的细节和噪声,为了拟合所有数据点“不择手段”,这时它就过拟合了。

换句话说,从左往右看,模型的复杂度逐渐提高,在训练集上的预测错误逐渐减少,但它在测试集上的错误率却呈现一条下凸曲线。

如果你之前构建过神经网络,想必你已经得到了这个教训:网络有多复杂,过拟合就有多容易。为了使模型在拟合数据的同时更具推广性,我们可以用正则化对学习算法做一些细微修改,从而提高模型的整体性能。

正则化和过拟合

过拟合和神经网络的设计密切相关,因此我们先来看一个过拟合的神经网络:

如果你之前阅读过我们的从零学习:从Python和R理解和编码神经网络(完整版),或对神经网络正则化概念有初步了解,你应该知道上图中带箭头的线实际上都带有权重,而神经元是储存输入输出的地方。为了公平起见,也就是为了防止网络在优化方向上过于放飞自我,这里我们还需要加入一个先验——正则化惩罚项,用来惩罚神经元的加权矩阵。

如果我们设的正则化系数很大,导致一些加权矩阵的值几乎为零——那最后我们得到的是一个更简单的线性网络,它很可能是欠拟合的。

因此这个系数并不是越大越好。我们需要优化这个正则化系数的值,以便获得一个良好拟合的模型,如下图所示。

深度学习中的正则化

L2和L1正则化

L1和L2是最常见的正则化方法,它们的做法是在代价函数后面再加上一个正则化项。

代价函数 = 损失(如二元交叉熵) + 正则化项

由于添加了这个正则化项,各权值被减小了,换句话说,就是神经网络的复杂度降低了,结合“网络有多复杂,过拟合就有多容易”的思想,从理论上来说,这样做等于直接防止过拟合(奥卡姆剃刀法则)。

当然,这个正则化项在L1和L2里是不一样的。

对于L2,它的代价函数可表示为:

这里λ就是正则化系数,它是一个超参数,可以被优化以获得更好的结果。对上式求导后,权重w前的系数为1−ηλ/m,因为η、λ、m都是正数,1−ηλ/m小于1,w的趋势是减小,所以L2正则化也被称为权重衰减。

而对于L1,它的代价函数可表示为:

和L2不同,这里我们惩罚的是权重w的绝对值。对上式求导后,我们得到的等式里包含一项-sgn(w),这意味着当w是正数时,w减小趋向于0;当w是负数时,w增大趋向于0。所以L1的思路就是把权重往0靠,从而降低网络复杂度。

因此当我们想要压缩模型时,L1的效果会很好,但如果只是简单防止过拟合,一般情况下还是会用L2。在Keras中,我们可以直接调用regularizers在任意层做正则化。

例:在全连接层使用L2正则化的代码:

from keras import regularizers

model.add(Dense(64, input_dim=64,

kernel_regularizer=regularizers.l2(0.01)

注:这里的0.01是正则化系数λ的值,我们可以通过网格搜索对它做进一步优化。

Dropout

Dropout称得上是正则化方法中最有趣的一种,它的效果也很好,所以是深度学习领域常用的方法之一。为了更好地解释它,我们先假设我们的神经网络长这样:

那么Dropout到底drop了什么?我们来看下面这幅图:在每次迭代中,它会随机选择一些神经元,并把它们“满门抄斩”——把神经元连同相应的输入输出一并“删除”。

比起L1和L2对代价函数的修改,Dropout更像是训练网络的一种技巧。随着训练进行,神经网络在每一次迭代中都会忽视一些(超参数,常规是一半)隐藏层/输入层的神经元,这就导致不同的输出,其中有的是正确的,有的是错误的。

这个做法有点类似集成学习,它能更多地捕获更多的随机性。集成学习分类器通常比单一分类器效果更好,同样的,因为网络要拟合数据分布,所以Dropout后模型大部分的输出肯定是正确的,而噪声数据影响只占一小部分,不会对最终结果造成太大影响。

由于这些因素,当我们的神经网络较大且随机性更多时,我们一般用Dropout。

在Keras中,我们可以使用keras core layer实现dropout。下面是它的Python代码:

from keras.layers.core importDropout

model = Sequential([

Dense(output_dim=hidden1_num_units, input_dim=input_num_units, activation='relu'),

Dropout(0.25),

Dense(output_dim=output_num_units, input_dim=hidden5_num_units, activation='softmax'),

])

注:这里我们把0.25设为Dropout的超参数(每次“删”1/4),我们可以通过网格搜索对它做进一步优化。

数据增强

既然过拟合是模型对数据集中噪声和细节的过度捕捉,那么防止过拟合最简单的方法就是增加训练数据量。但是在机器学习任务中,增加数据量并不是那么容易实现的,因为搜集、标记数据的成本太高了。

假设我们正在处理的一些手写数字图像,为了扩大训练集,我们能采取的方法有——旋转、翻转、缩小/放大、位移、截取、添加随机噪声、添加畸变等。下面是一些处理过的图:

这些方式就是数据增强。从某种意义上来说,机器学习模型的性能是靠数据量堆出来的,因此数据增强可以为模型预测的准确率提供巨大提升。有时为了改进模型,这也是一种必用的技巧。

在Keras中,我们可以使用ImageDataGenerator执行所有这些转换,它提供了一大堆可以用来预处理训练数据的参数列表。以下是实现它的示例代码:

from keras.preprocessing.image importImageDataGenerator

datagen = ImageDataGenerator(horizontal flip=True)

datagen.fit(train)

早停法

这是一种交叉验证策略。训练前,我们从训练集中抽出一部分作为验证集,随着训练的进行,当模型在验证集上的性能越来越差时,我们立即手动停止训练,这种提前停止的方法就是早停法。

在上图中,我们应该在虚线位置就停止训练,因为在那之后,模型就开始过拟合了。

在Keras中,我们可以调用callbacks函数提前停止训练,以下是它的示例代码:

from keras.callbacks importEarlyStopping

EarlyStopping(monitor='val_err', patience=5)

在这里,monitor指的是需要监控的epoch数量;val_err表示验证错误(validation error)。

patience表示经过5个连续epoch后模型预测结果没有进一步改善。结合上图进行理解,就是在虚线后,模型每训练一个epoch就会有更高的验证错误(更低的验证准确率),因此连续训练5个epoch后,它会提前停止训练。

注:有一种情况是当模型训练5个epoch后,它的验证准确率可能会提高,因此选取超参数时我们要小心。

用keras实例研究MNIST数据

数据集:datahack.analyticsvidhya.com/contest/practice-problem-identify-the-digits/

学了这么多正则化方法,现在我们就要开始动手实践了。在这个案例中,我们用的是Analytics Vidhya的数字识别数据集。

我们先导几个基本库:

%pylab inline

import numpy as np

import pandas as pd

from scipy.misc import imread

from sklearn.metrics import accuracy_score

from matplotlib import pyplot

import tensorflow as tf

import keras

# 阻止潜在的随机性

seed = 128

rng = np.random.RandomState(seed)

然后加载数据集:

root_dir = os.path.abspath('/Users/shubhamjain/Downloads/AV/identify the digits/')

data_dir = os.path.join(root_dir, 'data')

sub_dir = os.path.join(root_dir, 'sub')

## 只读取训练文件

train = pd.read_csv(os.path.join(data_dir, 'Train', 'train.csv'))

train.head()

检查一下图像:

img_name = rng.choice(train.filename)

filepath = os.path.join(data_dir, 'Train', 'Images', 'train', img_name)

img = imread(filepath, flatten=True)

pylab.imshow(img, cmap='gray')

pylab.axis('off')

pylab.show()

# 在numpy数组中存储图像

temp = []

for img_name in train.filename:

image_path = os.path.join(data_dir, 'Train', 'Images', 'train', img_name)

img = imread(image_path, flatten=True)

img = img.astype('float32')

temp.append(img)

x_train = np.stack(temp)

x_train /= 255.0

x_train = x_train.reshape(-1, 784).astype('float32')

y_train = keras.utils.np_utils.to_categorical(train.label.values)

创建验证数据集(7:3):

split_size = int(x_train.shape[0]*0.7)

x_train, x_test = x_train[:split_size], x_train[split_size:]

y_train, y_test = y_train[:split_size], y_train[split_size:]

构建一个带有5个隐藏层的简单神经网络,每层包含500个神经元:

# 导入keras模块

from keras.models importSequential

from keras.layers importDense

# define vars

input_num_units = 784

hidden1_num_units = 500

hidden2_num_units = 500

hidden3_num_units = 500

hidden4_num_units = 500

hidden5_num_units = 500

output_num_units = 10

epochs = 10

batch_size = 128

model = Sequential([

Dense(output_dim=hidden1_num_units, input_dim=input_num_units, activation='relu'),

Dense(output_dim=hidden2_num_units, input_dim=hidden1_num_units, activation='relu'),

Dense(output_dim=hidden3_num_units, input_dim=hidden2_num_units, activation='relu'),

Dense(output_dim=hidden4_num_units, input_dim=hidden3_num_units, activation='relu'),

Dense(output_dim=hidden5_num_units, input_dim=hidden4_num_units, activation='relu'),

Dense(output_dim=output_num_units, input_dim=hidden5_num_units, activation='softmax'),

])

先跑10个epoch,快速检查一下模型性能:

model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])

trained_model_5d = model.fit(x_train, y_train, nb_epoch=epochs, batch_size=batch_size, validation_data=(x_test, y_test))

L2正则化

from keras import regularizers

model = Sequential([

Dense(output_dim=hidden1_num_units, input_dim=input_num_units, activation='relu',

kernel_regularizer=regularizers.l2(0.0001)),

Dense(output_dim=hidden2_num_units, input_dim=hidden1_num_units, activation='relu',

kernel_regularizer=regularizers.l2(0.0001)),

Dense(output_dim=hidden3_num_units, input_dim=hidden2_num_units, activation='relu',

kernel_regularizer=regularizers.l2(0.0001)),

Dense(output_dim=hidden4_num_units, input_dim=hidden3_num_units, activation='relu',

kernel_regularizer=regularizers.l2(0.0001)),

Dense(output_dim=hidden5_num_units, input_dim=hidden4_num_units, activation='relu',

kernel_regularizer=regularizers.l2(0.0001)),

Dense(output_dim=output_num_units, input_dim=hidden5_num_units, activation='softmax'),

])

model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])

trained_model_5d = model.fit(x_train, y_train, nb_epoch=epochs, batch_size=batch_size, validation_data=(x_test, y_test))

λ等于0.0001,模型预测准确率更高了!

L1正则化

## l1

model = Sequential([

Dense(output_dim=hidden1_num_units, input_dim=input_num_units, activation='relu',

kernel_regularizer=regularizers.l1(0.0001)),

Dense(output_dim=hidden2_num_units, input_dim=hidden1_num_units, activation='relu',

kernel_regularizer=regularizers.l1(0.0001)),

Dense(output_dim=hidden3_num_units, input_dim=hidden2_num_units, activation='relu',

kernel_regularizer=regularizers.l1(0.0001)),

Dense(output_dim=hidden4_num_units, input_dim=hidden3_num_units, activation='relu',

kernel_regularizer=regularizers.l1(0.0001)),

Dense(output_dim=hidden5_num_units, input_dim=hidden4_num_units, activation='relu',

kernel_regularizer=regularizers.l1(0.0001)),

Dense(output_dim=output_num_units, input_dim=hidden5_num_units, activation='softmax'),

])

model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])

trained_model_5d = model.fit(x_train, y_train, nb_epoch=epochs, batch_size=batch_size, validation_data=(x_test, y_test))

模型准确率没有任何提高,PASS!

Dropout

## dropout

from keras.layers.core importDropout

model = Sequential([

Dense(output_dim=hidden1_num_units, input_dim=input_num_units, activation='relu'),

Dropout(0.25),

Dense(output_dim=hidden2_num_units, input_dim=hidden1_num_units, activation='relu'),

Dropout(0.25),

Dense(output_dim=hidden3_num_units, input_dim=hidden2_num_units, activation='relu'),

Dropout(0.25),

Dense(output_dim=hidden4_num_units, input_dim=hidden3_num_units, activation='relu'),

Dropout(0.25),

Dense(output_dim=hidden5_num_units, input_dim=hidden4_num_units, activation='relu'),

Dropout(0.25),

Dense(output_dim=output_num_units, input_dim=hidden5_num_units, activation='softmax'),

])

model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])

trained_model_5d = model.fit(x_train, y_train, nb_epoch=epochs, batch_size=batch_size, validation_data=(x_test, y_test))

还可以,准确率比一开始提高了一些。

数据增强

from keras.preprocessing.image importImageDataGenerator

datagen = ImageDataGenerator(zca_whitening=True)

# 加载数据

train = pd.read_csv(os.path.join(data_dir, 'Train', 'train.csv'))

temp = []

for img_name in train.filename:

image_path = os.path.join(data_dir, 'Train', 'Images', 'train', img_name)

img = imread(image_path, flatten=True)

img = img.astype('float32')

temp.append(img)

x_train = np.stack(temp)

X_train = x_train.reshape(x_train.shape[0], 1, 28, 28)

X_train = X_train.astype('float32')

# 从数据中拟合参数——增加训练数据

datagen.fit(X_train)

在这里,我们用了zca_whitening,它突出了每个数字的轮廓,如下图所示:

## splitting

y_train = keras.utils.np_utils.to_categorical(train.label.values)

split_size = int(x_train.shape[0]*0.7)

x_train, x_test = X_train[:split_size], X_train[split_size:]

y_train, y_test = y_train[:split_size], y_train[split_size:]

## reshaping

x_train=np.reshape(x_train,(x_train.shape[0],-1))/255

x_test=np.reshape(x_test,(x_test.shape[0],-1))/255

## structure using dropout

from keras.layers.core importDropout

model = Sequential([

Dense(output_dim=hidden1_num_units, input_dim=input_num_units, activation='relu'),

Dropout(0.25),

Dense(output_dim=hidden2_num_units, input_dim=hidden1_num_units, activation='relu'),

Dropout(0.25),

Dense(output_dim=hidden3_num_units, input_dim=hidden2_num_units, activation='relu'),

Dropout(0.25),

Dense(output_dim=hidden4_num_units, input_dim=hidden3_num_units, activation='relu'),

Dropout(0.25),

Dense(output_dim=hidden5_num_units, input_dim=hidden4_num_units, activation='relu'),

Dropout(0.25),

Dense(output_dim=output_num_units, input_dim=hidden5_num_units, activation='softmax'),

])

model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])

trained_model_5d = model.fit(x_train, y_train, nb_epoch=epochs, batch_size=batch_size, validation_data=(x_test, y_test))

提升非常明显!

早停法

from keras.callbacks importEarlyStopping

model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])

trained_model_5d = model.fit(x_train, y_train, nb_epoch=epochs, batch_size=batch_size, validation_data=(x_test, y_test)

, callbacks = [EarlyStopping(monitor='val_acc', patience=2)])

和上面那些方法相比,早停法只跑了5个epoch就停止了,因为预测准确率没有提高。但是如果我们增加迭代的次数,它应该能给出更好的结果。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 神经网络
    +关注

    关注

    42

    文章

    4762

    浏览量

    100517
  • 正则化
    +关注

    关注

    0

    文章

    17

    浏览量

    8123
  • python
    +关注

    关注

    55

    文章

    4778

    浏览量

    84439

原文标题:一文概述深度学习中的正则化(含Python代码)

文章出处:【微信号:jqr_AI,微信公众号:论智】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    神经网络中避免拟合5种方法介绍

    丢弃法是一种避免神经网络拟合正则技术。像L1和L2这样的正则技术通过修改代价函数来减少
    发表于 02-04 11:30 2.5w次阅读
    神经网络中避免<b class='flag-5'>过</b><b class='flag-5'>拟合</b>5种<b class='flag-5'>方法</b>介绍

    深层神经网络模型的训练:拟合优化

    为了训练出高效可用的深层神经网络模型,在训练时必须要避免拟合的现象。拟合现象的优化方法通常有三种。
    的头像 发表于 12-02 14:17 2688次阅读
    深层神经网络模型的训练:<b class='flag-5'>过</b><b class='flag-5'>拟合</b>优化

    机器学习基础知识 包括评估问题,理解拟合、欠拟合以及解决问题的技巧

    学习通用的,一部分用于解决拟合问题的技术(如dropout)除外。 4.1 三类机器学习问题 在之前的所有例子中,尝试解决的是分类(预测猫或狗)或回归(预测用户在平台上花费的平均时间)问题。所有这些都是有监督学习的例子,目的是
    发表于 07-12 09:28 915次阅读
    机器学习基础知识 包括评估问题,理解<b class='flag-5'>过</b><b class='flag-5'>拟合</b>、欠<b class='flag-5'>拟合</b>以及解决问题的技巧

    采集正弦曲线零点附近有波动,怎么曲线拟合

    采集正弦曲线,得到了一组数,零点附近有波动,怎么曲线拟合,将其拟合成标准的正弦曲线的点?
    发表于 04-09 15:13

    拟合,欠拟合以及模型的判断

    python-学习曲线,判断过拟合,欠拟合
    发表于 04-24 10:23

    模型的拟合之欠拟合总体解决方案

    15 模型的拟合 & 欠拟合 & 总体解决方案
    发表于 05-15 07:49

    深度学习中拟合/欠拟合的问题及解决方案

    的数据可以对未来的数据进行推测与模拟,因此都是使用历史数据建立模型,即使用已经产生的数据去训练,然后使用该模型去拟合未来的数据。 在我们机器学习和深度学习的训练过程中,经常会出现拟合和欠拟合
    发表于 01-28 06:57

    曲线拟合的判定方法有哪几种

    曲线拟合是什么意思?曲线拟合的判定方法有哪几种呢?
    发表于 11-19 06:48

    基于拟合神经网络的混沌伪随机序列

    伪随机序列在保密通信、扩频通信、密码学等领域具有重要作用。本文结合神经网络和混沌映射的特点,提出了一种基于拟合BP 神经网络的混沌伪随机序列产生方法。以logist
    发表于 12-22 14:12 6次下载

    【连载】深度学习笔记4:深度神经网络的正则

    今天要写的是关于机器学习和深度学习中的一项关键技术:正则。相信在机器学习领域摸爬滚打多年的你一定知道正则是防止模型
    的头像 发表于 08-14 11:58 3315次阅读

    拟合拟合是什么?解决方法总结

    拟合是指模型在训练集上表现很好,到了验证和测试阶段就大不如意了,即模型的泛能力很差。
    的头像 发表于 01-29 17:48 3.1w次阅读
    欠<b class='flag-5'>拟合</b>和<b class='flag-5'>过</b><b class='flag-5'>拟合</b>是什么?解决<b class='flag-5'>方法</b>总结

    深度学习中拟合、欠拟合问题及解决方案

    如何判断过拟合呢?我们在训练过程中会定义训练误差,验证集误差,测试集误差(泛误差)。训练误差总是减少的,而泛误差一开始会减少,但到一定程序后不减反而增加,这时候便出现了
    发表于 01-22 07:44 6次下载
    深度学习中<b class='flag-5'>过</b><b class='flag-5'>拟合</b>、欠<b class='flag-5'>拟合</b>问题及解决方案

    正则方法DropKey: 两行代码高效缓解视觉Transformer拟合

    美图影像研究院(MT Lab)与中国科学院大学在 CVPR 2023 上发表了一篇文章,提出一种新颖且即插即用的正则器 DropKey,该正则器可以有效缓解 Vision Tran
    的头像 发表于 04-17 11:35 1136次阅读

    拟合、泛和偏差-方差权衡

    在机器学习中,过度拟合是当模型变得过于复杂并开始过于接近训练数据时发生的常见问题。这意味着该模型可能无法很好地推广到新的、看不见的数据,因为它基本上记住了训练数据,而不是真正学习底层模式或关系。技术术语来说,考虑一个回归模型,它需要线性关系,而是使用多项式表示。
    发表于 06-12 09:31 472次阅读
    <b class='flag-5'>过</b><b class='flag-5'>拟合</b>、泛<b class='flag-5'>化</b>和偏差-方差权衡

    深度学习模型中的拟合正则

    测试数据或新数据上表现不佳的现象。为了解决这个问题,正则(Regularization)技术应运而生,成为深度学习中不可或缺的一部分。本文将从拟合的原因、表现、
    的头像 发表于 07-09 15:56 757次阅读