0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

对于机器学习/数据科学初学者 应该掌握的七种回归分析方法

zhKF_jqr_AI 来源:未知 作者:steve 2018-04-27 15:55 次阅读

对于机器学习/数据科学的初学者来说,线性回归,或者Logistic回归是许多人在建立预测模型时接触的第一/第二种方法。由于这两种算法适用性极广,有些人甚至在走出校门当上数据分析师后还固执地认为回归只有这两种形式,或者换句话说,至少线性回归和Logistic回归应该是其中最重要两个算法。那么事实真的是这样吗?

Sunil Ray是一位在印度保险行业拥有丰富经验的商业分析师和人工智能专家,针对这个问题,他指出其实回归有无数种形式,每种回归算法都有自己擅长的领域和各自的特色。在本文中,他将以最简单的形式介绍7种较为常见的回归形式,希望读者们在耐心阅读完毕后,可以在学习、工作中多做尝试,而不是无论遇到什么问题都直接上“万金油”的线性回归和Logistic回归。

目录

1. 什么是回归分析?

2. 为什么要用回归分析?

3. 几种常见的回归分析方法

线性回归

Logistic回归

多项式回归

逐步回归

岭回归

Lasso回归

ElasticNet回归

4. 如何挑选适合的回归模型?

什么是回归分析?

回归分析是一种预测建模技术,它可以被用来研究因变量(目标)和自变量(预测)之间的关系,常见于预测建模、时间序列建模和查找变量间关系等应用。举个例子,通过回归分析,我们能得出司机超速驾驶和发生交通事故次数之间的关系。

它是建模和分析数据的重要工具。回归分析在图像上表示为一条努力拟合所有数据点的曲线/线段,它的目标是使数据点和曲线间的距离最小化。

为什么要用回归分析?

如上所述,回归分析估计的是两个或两个以上变量间的关系。我们可以举这样一个例子来帮助理解:

假设A想根据公司当前的经济状况估算销售增长率,而最近一份数据表明,公司的销售额增长约为财务增长的2.5倍。在此基础上,A就能基于各项数据信息预测公司未来的销售情况。

使用回归分析有许多优点,其中最突出的主要是以下两个:

它能显示因变量和自变量之间的显著关系;

它能表现多个独立变量对因变量的不同影响程度。

除此之外,回归分析还能揭示同一个变量带来的不同影响,如价格变动幅度和促销活动多少。它为市场研究人员/数据分析师/数据科学家构建预测模型提供了评估所用的各种重要变量。

几种常见的回归分析方法

回归分析的方法有很多,但其中出名的没几个。综合来看,所有方法基本上都由这3个重要参数驱动:自变量的数量、因变量的类型和回归曲线的形状。

对于机器学习/数据科学初学者 应该掌握的七种回归分析方法

至于为什么是这三点,我们会在后文作出具体解释。当然,对于那些有创意、能独立设计参数的人,他们的模型大可不必局限于这些参数。这只是以前大多数人的做法。

1. 线性回归

线性回归是知名度最广的建模方法之一。每当提及建立一个预测模型,它总能占一个首选项名额。对于线性回归,它的因变量是连续的,自变量则可以是连续的或是离散的。它的回归线在本质上是线性的。

在一元问题中,如果我们要用线性回归建立因变量Y和和自变量X之间的关系,这时它的回归线是一条直线,如下图所示。

对于机器学习/数据科学初学者 应该掌握的七种回归分析方法

它的相应表达式为:Y = a + b × X + e。其中a是y轴截距,b是回归线斜率,e是误差项。

但有时我们可能拥有不止一个自变量X,即多元问题,这时多元线性回归的回归方程就是一个平面或是一个超平面。

既然有了一条线,那我们如何确定拟合得最好的那条回归线呢(a和b的值)?对于这个问题,最常规的方法是最小二乘法——最小化每个点到回归线的欧氏距离平方和。由于做了平方,距离不存在正负差别影响。

对于机器学习/数据科学初学者 应该掌握的七种回归分析方法

对于机器学习/数据科学初学者 应该掌握的七种回归分析方法

线性回归重点:

自变量和因变量之间必须存在线性关系;

多元回归受多重共线性、自相关和异方差影响;

线性回归对异常值非常敏感。它会严重影响回归线,并最终影响预测值。

多重共线性会使参数估计值的方差增大,可能会过度地影响最小二乘估计值,从而造成消极影响。

在存在多个自变量的情况下,我们可以用前进法、后退法和逐步法选择最显著的自变量。

2. Logistic回归

Logistic回归一般用于判断事件成功/失败的概率,如果因变量是一个二分类(0/1,真/假,是/否),这时我们就应该用Logistic回归。它的Y是一个值域为[0, 1]的值,可以用下方等式表示:

odds = p/ (1-p) = 事件发生概率 / 事件未发生概率 ln(odds) = ln(p/(1-p)) logit(p) = ln(p/(1-p)) = b0+b1×1+b2×2+b3×3....+bk×k

在上式中,p是目标特征的概率。不同于计算平方和的最小值,这里我们用的是极大似然估计,即找到一组参数θ,使得在这组参数下,样本数据的似然度(概率)最大。考虑到对数损失函数与极大似然估计的对数似然函数在本质上是等价的,所以Logistic回归使用了对数函数求解参数。

对于机器学习/数据科学初学者 应该掌握的七种回归分析方法

Logistic回归重点:

Logistic回归被广泛用于分类问题。

Logistic回归无需依赖自变量和因变量之间的线性关系,而是用非线性对数计算用于预测的比值比,因此可以处理各种类型的问题。

为了避免过拟合和欠拟合,Logistic回归需要包含所有重要变量,然后用逐步回归方法去估计逻辑回归。

Logistic回归对样本大小有较高要求,因为对于过小的数据集,最大似然估计不如普通最小二乘法。

各自变量间不存在多重共线性。

如果因变量的值是序数,那么它就该被称为序数Logistic回归。

如果因变量是多个类别,那么它就该被称为多项Logistic回归。

3. 多项式回归

多项式回归是对线性回归的补充。线性回归假设自变量和因变量之间存在线性关系,但这个假设并不总是成立的,所以我们需要扩展至非线性模型。Logistic回归采取的方法是用非线性的对数函数,而多项式回归则是把一次特征转换成高次特征的线性组合多项式。

对于机器学习/数据科学初学者 应该掌握的七种回归分析方法

一元多项式回归

简而言之,如果自变量的幂大于1,那么该回归方程是多项式回归方程,即Y = A + B × X2。在这种回归方法中,它的回归线不是一条直线,而是一条力争拟合所有数据点的曲线。

对于机器学习/数据科学初学者 应该掌握的七种回归分析方法

多项式回归重点:

尽管更高阶的多项式回归可以获得更低的误差,但它导致过拟合的可能性也更高。

要注意曲线的方向,观察它的形状和趋势是否有意义,在此基础上在逐步提高幂。

对于机器学习/数据科学初学者 应该掌握的七种回归分析方法

过拟合

4. 逐步回归

截至目前,上述方法都需要针对因变量Y选择一个目标自变量X,再用线性的、非线性的方法建立“最优”回归方程,以便对因变量进行预测或分类。那么当我们在处理多个自变量时,有没有一种回归方法能按照对Y的影响大小,自动筛选出那些重要的自变量呢?

这种方法就是本节要介绍的逐步回归,它利用观察统计值(如R方,t-stats和AIC度量)来辨别重要变量。作为一种回归分析方法,它使用的方法是基于给定的水平指标F一次一个地添加/丢弃变量,以下是几种常用的做法:

标准的逐步回归只做两件事:根据每个步骤添加/删除变量。

前进法:基于模型中最重要的变量,一次一个添加剩下的变量中最重要的变量。

后退法:基于模型中所有变量,一次一个删除最不重要的变量。

这种建模方法的目的是用尽可能小的变量预测次数来最大化预测能力,它是处理更高维数据集的方法之一。

5. 岭回归

在谈及线性回归重点时,我们曾提到多重共线性会使参数估计值的方差增大,并过度地影响最小二乘估计值,从而降低预测精度。因此方差和偏差是导致输出值偏离真值的罪魁祸首之一。

我们先来回顾一下线性回归方程:Y = a + b × X + e。

如果涉及多个自变量,那它是:Y = a + Y = a + b1X1+ b2X2+ … + e

上式表现了偏差和误差对最终预测值的明显影响。为了找到方差和偏差的折中,一种可行的做法是在平方误差的基础上增加一个正则项λ,来解决多重共线性问题。请看以下公式:

对于机器学习/数据科学初学者 应该掌握的七种回归分析方法

这个代价函数可以被分为两部分,第一部分是一个最小二乘项,第二部分则是系数β的平方和,再乘以一个调节参数λ作为惩罚项,它能有效控制方差和偏差的变化:随着λ的增大,模型方差减小而偏差增大。

岭回归重点:

岭回归的假设与最小二乘法回归的假设相同,除了假设正态性。

岭回归可以缩小系数的值,但因为λ不可能为无穷大,所以它不会等于0。

这实际上是一种正则化方法,使用了l2范数。

6. Lasso回归

同样是解决多重共线性问题,岭回归是在平方误差的基础上增加一个正则项λ,那么Lasso回归则把二次项改成了一次绝对值。它可以降低异常值对模型的影响,并提高整体准确度。

对于机器学习/数据科学初学者 应该掌握的七种回归分析方法

一次项求导可以抹去变量本身,因此Lasso回归的系数可以为0。这样可以起来真正的特征筛选效果。

Lasso回归重点:

Lasso回归的假设与最小二乘法回归的假设相同,除了假设正态性。

Lasso回归的系数可以为0。

这实际上是一种正则化方法,使用了l1范数。

如果一组变量高度相关,Lasso回归会选择其中的一个变量,然后把其他的都变为0。

7. ElasticNet回归

ElasticNet是Lasso和Ridge回归技术的结合。它使用L1和L2范数作为惩罚项,既能用于权重非零的稀疏模型,又保持了正则化属性。简单来说,就是当有多个相关特征时,Lasso回归只会选择其中的一个变量,但ElasticNet回归会选择两个。

对于机器学习/数据科学初学者 应该掌握的七种回归分析方法

在Lasso和Ridge之间进行权衡的一个实际优势是,它允许Elastic-Net继承岭回归的一些稳定性。

ElasticNet回归重点:

它鼓励在高度相关变量的情况下的群体效应。

在选择变量的数量上没有限制。

受双重收缩影响。

除了这7中常用的回归分析方法外,贝叶斯回归、生态学回归和鲁棒回归也是出镜率很高的一些选择。

如何挑选适合的回归模型?

当你只知道一种或两种方法时,生活通常很简单。相信不少读者都听到过这种论调:如果结果是连续的,用线性回归;如果是个二分类,就用Logistic回归。然而随着现在我们的选择越来越多,许多人不免要深受选择恐惧症影响,无法做出满意的决定。

那么面对这么多的回归分析方法,我们该怎么选择呢?以下是一些可以考虑的关键因素:

数据探索是构建预测模型不可或缺的一部,因此在选择正确的模型前,我们可以先分析数据,找到变量间的关系。

为了比较不同方法的拟合成都,我们可以分析统计显著性参数、R方、调整R方、最小信息标准、BIC和误差准则等统计值,或者是Mallow‘s Cp准则。将模型与所有可能的子模型进行比较来检查模型中可能存在的偏差。

交叉验证是评估预测模型最好的方法没有之一。

如果你的数据集中有多个奇怪变量,你最好手动添加而不要用自动的方法。

杀鸡焉用牛刀。根据你的任务选择强大/不强大的模型。

岭回归、Lasso回归和ElasticNet回归在高维度、多重共线性情况下有较好的表现。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 机器学习
    +关注

    关注

    66

    文章

    8419

    浏览量

    132671
  • 数据科学
    +关注

    关注

    0

    文章

    165

    浏览量

    10062

原文标题:初学者应该掌握的七种回归分析方法

文章出处:【微信号:jqr_AI,微信公众号:论智】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    DSP5509A这个芯片,对于初学者应该从哪里开始学习啊???

    DSP5509A这个芯片,对于初学者应该从哪里开始学习啊???看些什么资料啊?还有就是网上的视频我也看了一部分,但是一开始就是软件,对于硬件
    发表于 08-14 13:26

    初学者如何快速掌握

    初学者如何快速掌握
    发表于 04-22 16:30

    初学者之路—硬件学习经验

    初学者之路—硬件学习经验一文是一位搞硬件的在校研究生写的,希望对那些初学者之路电脑网等处于迷茫的硬件初学者学习之路有所帮助!
    发表于 12-29 10:20 1.5w次阅读

    HDL初学者谨记:学习HDL前必知

    电子发烧友网核心提示: 对于初学者而言,在学硬件描述语言(HDL)之前一定要注意以下几点。算是电子发烧友网小编给HDL语言初学者的一点小小提示吧,希望对初学者起到一些指引作
    发表于 10-15 11:14 2755次阅读

    cad初学者应该注意的问题

    很多学习CAD的新手都不免在学习过程中犯下各种各样的错误,下面是小编整理出一些cad初学都应注意的问题,这此问题都是CAD初学者经常会遇到的问题,希望下面的文章对CAD
    发表于 10-18 09:43 1669次阅读

    verilog初学者学习ppt

    适合verilog初学者的教程,可以好好参考学习
    发表于 03-25 14:01 32次下载

    电子学习资料[适初学者]

    适合初学者学习资料
    发表于 02-08 17:25 0次下载

    九张机器学习和深度学习代码速查表分享_初学者必备

    本文作者在 Github 上建立了一个代码速查表,对机器学习初学者来说是不可多得的一个资源。 对于初学者来讲,入门
    的头像 发表于 06-30 00:52 4085次阅读
    九张<b class='flag-5'>机器</b><b class='flag-5'>学习</b>和深度<b class='flag-5'>学习</b>代码速查表分享_<b class='flag-5'>初学者</b>必备

    机器学习初学者必看指南

    文章简洁地介绍了机器学习的主要算法和一些伪代码,对于初学者有很大帮助,是一篇不错的总结文章,后期可以通过文中提到的算法展开去做一些实际问题。 引言 Google的自驾车和
    发表于 11-15 14:26 7000次阅读
    <b class='flag-5'>机器</b><b class='flag-5'>学习</b>的<b class='flag-5'>初学者</b>必看指南

    最适合初学者机器人有哪些

    学习知识的最好方式是在现实生活中实现。机器人也一样,如果你用自己的双手创造他们,你就能学好它。初学者和有经验的机器人创客会在编译和运行这些机器
    的头像 发表于 02-05 12:52 4050次阅读

    学习机器学习方法及如何运用Python

    ,如今在实体和在线的学习机器学习的资源有很多,本文整理了一些好用学习资源希望帮助初学者能更容易使用 Python 入门机器
    发表于 08-07 16:02 929次阅读

    fpga开发板推荐初学者

    对于一个初学者来说,选择一款适合学习的FPGA是整个FPGA学习生涯的必经之路。我个人建议在选择FPGA的时候,应该抓住如下几个原则:
    的头像 发表于 11-10 14:55 1.9w次阅读

    给Linux初学者的一些经验与建议与学习方法及其学习方向

    这篇文章是写给 Linux 初学者的,我会分享一些作为初学者应该知道的一些东西,这些内容都是本人从事 Linux 开发工作多年的心得体会,相信会对初学者有所帮助。
    的头像 发表于 03-19 11:33 2941次阅读

    FPGA初学者必读文档

    FPGA初学者必读文档(嵌入式开发适合哪个城市)-FPGA初学者必读文档,为学习FPGA做好准备。
    发表于 08-04 11:39 32次下载
    FPGA<b class='flag-5'>初学者</b>必读文档

    PLC初学者必须掌握的梯形图

    PLC初学者必须掌握大梯形图
    发表于 05-25 16:44 5次下载