0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

Arm已经主宰了CPU的IP领域也接管了GPU

dKBf_eetop_1 来源:未知 作者:李倩 2018-05-07 11:40 次阅读

目前约有十几种加速用户端机器学习(machine learning)任务的处理器核心正在角逐系统SoC市场,其中一些已经被设计于智能手机中。其目标在于取得比处理器IP巨擘Arm更早进入市场的先发优势,但预计Arm很快就会发布自家的产品

市场观察家The Linley Group的首席分析师Linley Gwennap在Linley处理器大会(Linley Processor Conference)发表专题演讲之前接受《EE Times》的访问。他表示,这场竞争态势显示机器学习芯片的许多举动正开始转向低功耗的用户端区块(block)。然而,在高性能的资料中心芯片之间,竞争仍处于初期阶段。

Gwennap说:「Arm已经主宰了CPU的IP领域,也接管了GPU,但人工智能(AI)引擎为核心芯片创造了一个全新的市场,让其它公司也能取得一个好的开始。」

这一市场中值得关注的新竞争对手与产品包括:

苹果(Apple) iPhone智能手机中,A11 SoC内建的Bionic生物神经网路引擎

三星(Samsung )Galaxy S9手机中,Exynos 9810处理器内建的DeePhi区块

华为(Huawei)麒麟970 (Kirin 970)手机中的寒武纪(Cambricon)神经引擎

联发科(MediaTek) P30 SoC中用于视觉和AI加速的Cadence P5 DSP

英特尔(Intel)未来PC芯片组中可能使用Movidius加速芯片

现有的AI芯片设计订单已经锁定了在整个手机市场中约占三分之一的高阶智能手机应用。Gwennap并预计,AI加速将在未来2~3年内渗透到手机市场的其它部份。

除了智能手机,汽车对AI芯片来说也是一个越来越大的市场。还有个人电脑(PC)、平板电脑和物联网(IoT)装置很快地也将充斥整个市场。

为了跟上步伐,Arm在今年二月宣布了一项名为'Project Trillium'的完整平台。但是,Gwennap说:「他们必须在一些最佳化电源效率的特定硬体加速器方面更具有竞争力。」

「Arm目前正着手开发这一类加速器,并计画在今年夏天发布其首款产品…但事实上,他们的进度已经落后了,这让一些新公司有机会尽快卡位。」

去年10月,Arm宣布组建了一个机器学习小组。今年2月更进一步提供该计画的若干细节。

Arm可能会在今年10月份于矽谷举行的年度活动中发表产品详情。但这并不能保证Arm将收复失地,因为神经网路引擎和CPU之间并不一定存在密切关系。

迄今所宣布的用户端推论加速器之原始性能数据,仅能反映部份现实(来源:The Linley Group)

基准和资料中心的竞争

最终,能在这场仍算是新战场中获胜的芯片将是集性能、功耗和芯片尺寸等优势于一的最佳组合。

Gwennap说:「问题在于我们看到了原始性能,但它实际上可归纳为在神经网路上提供的性能。所以,我们需要的是一个良好的基准,例如每秒钟可分类多少影像等。」

百度(Baidu)率先将AI基准作为开放来源发布,但尚未被广泛采用。交易处理委员会(Transaction Processing Council)去年底成立了一个工作小组来处理这个问题,但尚未提报任何进展。

他说:「提出基准并不难,但要让各家公司同意并比较结果可不简单…如今事情正在改观,所以,任何基准都必须发展,才能与时俱进。」。

目前为止,Gwennap的报告称,Videantis的多核心v-MP6000表现较其最接近的竞争对手Ceva NeuPro略具有原始性能优势。Ceva NeuPro将SIMD DSP与脉动MAC阵列相结合。

其它厂商还包括新思科技(Synopsys)的EV64,它结合了SIMD DSP与用于启动和池化(pooling)的客制逻辑。如同Videantis一样,AImotive AIware也使用了许多客制硬体区块。

在低成本的区块中,芯原微电子(VeriSilicon)的VIP8000-O采用具有多达8个深度学习引擎的GPU提供大部份的原始性能。令人不解的是,在所发布的芯片中,寒武纪的CPU采用小型矩阵引擎所提供的性能最低,但仍取得华为智能手机应用的重要订单。

英国芯片公司Imagination也携其PowerVR 2NX入局,PowerVR 2NX采用支援MAC阵列的客制非GPU架构。Nvidia则为其Xavier处理器的深度学习加速器(NVDLA)核心架构提供免费且开放的IP,并获得Arm的支持。

整体而言,Gwennap表示有多达40家公司都在设计客制的AI芯片。其中许多都锁定了资料中心应用,但在这个领域,Nvidia Volta GPU的地位稳固,并成为亚马逊(Amazon)等巨擘所选择的训练引擎。

Gwennap说:「我们现在看到的竞争对手是Google TPU和微软(Microsoft)基于FPGA的Brainwave——目前正被广泛部署,但至今还没有许多商用替代方案可供选择。」

「今年,在将新的AI资料中心架构投入生产方面,Wave Computing似乎领先一步。」

Wave Computing销售完整系统的决定显示其目标放在二线和三线(tier)业者,而不是喜欢制造自家最佳化产品的大型资料中心。

英特尔旗下的Nervana最近明确表示,要到2019年才会投产芯片。深度学习新创公司Graphcore声称将在今年稍晚发布新芯片。另一家新创公司Cerebrus则仍保持缄默,而比特币ASIC制造商比特大陆(BitMain)已在去年底宣布用于资料中心的AI芯片计画。

Gwennap说:「业界多家公司正一窝蜂地投入AI芯片领域,他们将其视为下一波淘金热,因而竞相抢搭这班列车。」

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • ARM
    ARM
    +关注

    关注

    134

    文章

    9099

    浏览量

    367741
  • 机器学习
    +关注

    关注

    66

    文章

    8421

    浏览量

    132703
  • AI芯片
    +关注

    关注

    17

    文章

    1887

    浏览量

    35053

原文标题:AI芯片「淘金热」 ARM腹背受敌

文章出处:【微信号:eetop-1,微信公众号:EETOP】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    名单公布!【书籍评测活动NO.43】 算力芯片 | 高性能 CPU/GPU/NPU 微架构分析

    和像素统一的G80到现在重金难求的H100;AMD的Zen系列CPU和RDNA系列GPU两线作战;中国的高性能计算芯片逐步获得更多TOP500排名;华为Ascend 910 NPU芯片成为AI时代
    发表于 09-02 10:09

    ARM进军GPU领域,挑战英伟达与英特尔

    英国芯片设计巨头ARM正悄然在以色列拉阿纳纳的研发中心布局其GPU(图形处理器)战略,意图在全球图形处理市场与英伟达和英特尔等业界巨头一较高下。据悉,ARM已在该开发中心组建了一支由约100名精英芯片与软件工程师构成的全球图形处
    的头像 发表于 08-21 10:19 508次阅读

    探索IP领域,玩转IP代理,畅游海外

    IP
    jf_62215197
    发布于 :2024年06月18日 07:43:21

    Arm发布针对旗舰智能手机的新一代CPUGPU IP

    全球领先的芯片设计公司Arm宣布了针对旗舰智能手机市场的全新CPUGPU IP设计方案——Cortex-X925 CPU和Immortal
    的头像 发表于 05-31 09:44 603次阅读

    Arm发布Arm v9架构CPUGPU IP及设计软件,助力AI计算

    长期以来,全球智能手机处理器均采用Arm架构,包括苹果、高通、联发科在内的众多厂商均依赖Arm提供的IP,且该应用范围已逐渐扩展至个人电脑与数据中心领域
    的头像 发表于 05-30 09:17 839次阅读

    大模型快速发展,GPU IP有何作用

    线程等。   事实上,除此之外还有一些GPU IP公司GPU产业发展做出很大贡献,包括Imagination、Arm、芯原科技等。在当前
    的头像 发表于 05-29 00:05 2363次阅读

    CPU渲染和GPU渲染优劣分析

    使用计算机进行渲染时,有两种流行的系统:基于中央处理单元(CPU)或基于图形处理单元(GPU)。CPU渲染利用计算机的CPU来执行场景并将其渲染到接近完美。这也是执行渲染的更传统方式。
    的头像 发表于 05-23 08:27 604次阅读
    <b class='flag-5'>CPU</b>渲染和<b class='flag-5'>GPU</b>渲染优劣分析

    为什么跑AI往往用GPU而不是CPU

    今天,人工智能(AI)已经在各个领域遍地开花,无论身处哪个行业,使用AI来帮助获取业务洞察,并建立竞争优势,已经非常常见。不过一个有趣的现象是,在用户采购AI基础设施时,几乎所有厂商都会强调其支持
    的头像 发表于 04-24 08:27 1923次阅读
    为什么跑AI往往用<b class='flag-5'>GPU</b>而不是<b class='flag-5'>CPU</b>?

    为什么说GPU再火,AI平台少不了强力的CPU

    随着人工智能和大规模计算的迅猛发展,GPU作为专门用于加速计算的芯片已经备受瞩目。
    的头像 发表于 04-02 10:05 446次阅读
    为什么说<b class='flag-5'>GPU</b>再火,AI平台<b class='flag-5'>也</b>少不了强力的<b class='flag-5'>CPU</b>?

    芯原2.5D GPU IP赋能先楫HPM6800系列RISC-V MCU

    芯原在嵌入式GPU IP领域的领先地位,进一步推动了RISC-V MCU在高性能图形处理领域的应用发展。
    的头像 发表于 03-07 11:47 1582次阅读

    gpu是什么和cpu的区别

    GPUCPU是两种常见的计算机处理器,它们在结构和功能上有很大的区别。在这篇文章中,我们将探讨GPUCPU的区别,并详细介绍它们的原理、应用领域
    的头像 发表于 02-20 11:24 1.9w次阅读

    gpu服务器是干什么的 gpu服务器与cpu服务器的区别有哪些

    处理器是GPU还是CPU,以及它们的计算方法和应用领域。 首先,让我们了解一下何为GPUGPU是图形处理器的缩写,它是用于处理图形和高性能
    的头像 发表于 01-30 15:31 885次阅读

    为什么GPUCPU更快?

    GPUCPU更快的原因并行处理能力:GPU可以同时处理多个任务和数据,而CPU通常只能一次处理一项任务。这是因为GPU的架构使得它可以同时
    的头像 发表于 01-26 08:30 2426次阅读
    为什么<b class='flag-5'>GPU</b>比<b class='flag-5'>CPU</b>更快?

    GPU是显卡吗 cpugpu哪个算力强

    GPU(图形处理器)是显卡(显像处理器)的一种,它是一种专门用于图形计算的处理器。显卡是计算机中的一个重要组件,负责处理和渲染图形,使它们能够在显示屏上显示出来。GPUCPU在计算原理和结构上有
    的头像 发表于 01-10 15:45 5327次阅读

    CPUGPU散热器设计的异同及其重要性

    CPUGPU散热器的设计异同及其重要性 在计算机的发展过程中,中央处理单元(CPU)和图形处理单元(GPU)在性能和热量产生方面的不断提升和增加,使得其在长时间工作时产生了大量的热量
    的头像 发表于 01-09 14:00 1332次阅读