0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

如何在ARM下实现高效C编程_10个关键点给你答案

算法&编程学院 作者:工程师a 2018-05-12 02:12 次阅读

通过一定的方法来编写C程序,可以帮助C编译器生成执行速度更快的ARM代码。下面就是一些与性能相关的关键点:

1.对局部变量、函数参数和返回值要使用signed和unsigned int类型。这样可以避免类型转换,而且可高效地使用ARM的32位数据操作指令。

2.最高效的循环体形式是减计数到零(counts down to zero)的do-while循环。

3.展开重要的循环来减少循环的开销。

4.不要依赖编译器来优化掉重复的存储器访问。指针别名会阻止编译器的这种优化。

5.尽可能把函数参数的个数限制在4个以内。如果函数参数都存放在寄存器内,那么函数调用就会快得多。

6.按元素尺寸从小到大排列的方法来安排结构体,特别是在thumb模式下编译。

7.不要使用位域,可以用掩码和逻辑操作来替代。

8.避免除法,可以用倒数的乘法来替代。

9.避免边界不对齐的数据。如果数据有可能边界不对齐,那么就要使用char *指针类型来访问。

10.在C编译器中使用内嵌汇编可以利用到C编译器本来不支持的指令或优化。

一、 数据类型使用上的优化

1.局部变量

一个char类型的数据比int类型的数据占用更小的寄存器空间或者更小的ARM堆栈空间。这两种设想对于ARM来说,都是错误的。所有的ARM寄存器都是32位的,所有的堆栈入口至少是32位的。当我们执行i++,要利用当i=255后,i++=0这个条件时,可以把它定义为char类型。

2.函数参数

尽管宽和窄的函数调用规则各有其优点,但char或short类型的函数参数和返回值都会产生额外的开销,导致性能的下降,并增加了代码尺寸。所以,即使是传输一个8位的数据,函数参数和返回值使用int类型也会更有效。

总结:

1)对于存放在寄存器中的局部变量,除了8位或16位的算术模运算外,尽量不要使用char和short类型,而要使用有符号或无符号int类型。除法运算时使用无符号数执行速度更快。

2)对于存放在主存储器中的数组和全局变量,在满足数据大小的前提下,应尽可能使用小尺寸的数据类型,这样可以节省存储空间。ARMv4体系结构可以有效地装载和存储所有宽度的数据,并可以使用递增数组指针来有效地访问数组。对于short类型数组,要避免使用数组基地址的偏移量,因为LDRH指令不支持偏移寻址。

3)通过读取数组或全局变量并赋给不同类型的局部变量时,或者把局部变量写入不同类型的数组或者全局变量时,要进行显式数据类型转换。这种转换使编译器可以明确、快速地处理,把存储器中数据宽度比较窄的数据类型扩展,并赋给寄存器中较宽的类型。

4)由于隐式或者显式的数据类型转换通常会有额外的指令周期开销,所以在表达式中应尽量避免使用。Load和store指令一般不会产生额外的转换开销,因为load和store指令是自动完成数据类型转换的。

5)对于函数参数和返回值应尽量避免使用char和short类型。即使参数范围比较小,也应该使用int类型,以防止编译器做不必要的类型转换。

二、C循环结构

在ARM上,一个循环其实只要2条指令就足够了:

一条减法指令,进行循环减法计数,同时设置结果的条件标志;

一条条件分支指令。

这里的关键是,循环的终止条件应为减计数到零,而不是计数增加到某个特定的限制值。由于减计数结构已存储在条件标志里,与零比较的指令就可以省略了。由于不用i作为数组的下标索引,采用减计数就没有任何问题了。

总而言之,无论对于有符号的循环计数值,都应使用i!=0作为循环的结束条件。对有符号数i,这比使用条件i》0少了一条指令。

总结:

1) 使用减计数到零的循环结构,这样编译器就不需要分配一个寄存器来保存循环终止值,而且与0比较的指令也可以省略。

2) 使用无符号的循环计数值,循环继续的条件为i!=0而不是i》0,这样可以保证循环开销只有两条指令。

3) 如果事先知道循环体至少会执行一次,那么使用do-while循环要比for循环要好,这样可以使编译器省去检查循环计数值是否为零的步骤。

4) 展开重要的循环体可降低循环开销,但不要过度展开,如果循环的开销对整个程序来说占的比例很小,那么循环展开反而会增加代码量并降低cache的性能。

5) 尽量使数组的大小是4或8的倍数,这样可以容易的以2,4,8次等多种选择展开循环,而不需要担心剩余数组元素的问题。

三、寄存器分配

高效的寄存器分配:应该尽量限制函数内部循环所用局部变量的数目,最多不超过12个,这样,编译器就可以把这些变量都分配给ARM寄存器。

四、函数调用

4寄存器规则:带有4个或者更少参数的函数,要比多于4个参数的函数执行效率高得多。对带有少于4个参数的函数来说,编译器可以用寄存器传递所有的参数;而对于多于4个参数的函数,函数调用者和被调用者必须通过访问堆栈来传递一些参数。

如果函数体积很小,只用到很少的寄存器,那么还有一些其他的方法来减少函数调用的开销。可以把调用函数和被调用函数放在同一个C文件中,这样编译器就知道了被调用函数生成的代码,并以此对调用函数进行一些优化。

总结:

1) 尽量限制函数的参数,不要超过4个,这样函数调用的效率会更高。也可以将几个相关的参数组织在一个结构体中,用传递结构体指针来代替多个参数。

2) 把比较小的被调用函数和调用函数放在同一个源文件中,并且要先定义,后调用,编译器就可以优化函数调用或者内联较小的函数。

3) 对性能影响较大的重要函数可使用关键字_inline进行内联。

五、指针别名

定义:当2个指针指向同一个地址对象时,这2个指针被称作该对象的别名(alias)。如果对其中一个指针进行写入,就会影响从另一个指针的读出。在一个函数中,编译器通常不知道哪一个指针是别名,哪一个不是;或哪一个指针有别名,哪一个没有。

避免指针别名:

1) 不要依赖编译器来消除包含存储器访问的公共子表达式,而应建立一个新的局部变量来保存这个表达式的值,这样可以保证只对这个表达式求一次值;

2) 避免使用局部变量的地址,否则对这个变量的访问效率会比较低。

六、结构体安排

在ARM上使用结构体有2个问题需要考虑:结构体地址边界对齐和结构体总的大小。

获得高效结构体的原则:

1) 把所有8位大小的元素安排在结构体的前面;

2) 以此安排16位、32位和64位的元素;

3) 把所有数组和比较大的元素安排在结构体最后;

4) 对于一条指令,如果结构体太大而不能访问所有的元素,那么把元素组织到一个子结构体中。编译器可以维持单独的子结构体的指针。

总结:

结构体元素要按照元素的大小来排列,以最小的元素放在开始,最大的元素安排在最后;避免使用很大的结构体,可以用层次化的小结构体来代替;为了提高可移植性,人工对API的结构体增加填充位,这样,结构体的安排将不会依赖与编译器;在API的结构体中要谨慎使用枚举类型。一个枚举类型的大小是编译器相关的。

七、位域

注意事项:

1) 应避免使用位域,而使用#define或者enum来定义屏蔽位;

2) 使用整型逻辑运算AND、OR、“异或”操作和屏蔽对位域进行测试、取反和设置操作。这些操作编译效率高,还可以同时对多个位域进行测试、取反和设置。

八、边界不对齐数据和字节排列方式(大/小端)

边界不对齐数据和字节排列方式这2个问题,可使内存访问和移植问题复杂化。须考虑数组指针是否边界对齐,ARM配置是大端(big-endian),还是小端(little-endian)的存储器系统。

总结:

1) 尽量避免使用边界不对齐的数据;

2) 使用类型char *可指向任意字节边界的数据。通过读字节来访问数据,使用逻辑操作来组合数据,这样代码就不会依赖于边界是否对齐或者ARM的字节排列方式的配置;

3) 为了快速访问边界不对齐的结构体,可以根据指针边界和处理器的字节排序方式写出不同的程序变体。

九、除法

ARM硬件上不支持除法指令,当代码中出现除法运算时,ARM编译器会调用C库函数(有符号的除法调用_rt_sdiv,无符号的调用_rt_udiv),来实现除法操作。有许多不同类型的除法程序来适应不同的除数和被除数。

总结:

1) 尽可能避免使用除法。对环形缓冲区的处理可以不用除法。

2) 如果不能避免除法运算,那么尽可能考虑使用除法程序同时产生商n/d和余数n%d的好处。

3) 对于重复对同一除数d的除法,预先计算好s=(2k-1)/d。可用乘以s的2k位乘法来代替除以d的k位无符号整数除法。

4)使用2的整数次幂作除数。当2的整数次幂做除数时,编译器会自动将除法运算转换成移位运算。所以在编写程序算法时,尽量使用2的整数次幂做除数。

5)求余运算。可以将一些典型的求余运算进行转换,以避免在程序中使用除法运算。

如:

uint counter1(uint count)

{

return (++count%60);

}

转换成:

uint counter2(uint count)

{

if (++count 》=60)

count=0;

return (count);

}

大多数ARM处理器硬件上并不支持浮点运算。这样在一个对价格敏感的嵌入式应用系统中,可节省空间和降低功耗。除了硬件向量浮点累加器VFP和ARM7500FE上的浮点累加器FPA外,C编译器必须在软件上提供浮点支持。

十、内联函数和内嵌汇编

高效地调用函数,使用内联函数可以完全去除函数调用的开销,另外许多编译器允许在C源程序中使用内嵌汇编。使用包含汇编的内嵌函数,可以使编译器支持通常不能有效使用的ARM指令和优化方法。

内联函数和内嵌汇编最大的好处是,可以实现一些在C语言部分中通常难以完成的操作。使用内联函数要比使用#define宏定义更好,因为后者不检查函数参数和返回值的类型。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • ARM
    ARM
    +关注

    关注

    134

    文章

    9021

    浏览量

    366381
  • c编程
    +关注

    关注

    0

    文章

    94

    浏览量

    29336
收藏 人收藏

    评论

    相关推荐

    何在arm模式读取cpsr寄存器的进位位值?

    中的进位位?如何在c环境构建arm和thumb混合编程环境?(如果有一任务是要你把一
    发表于 09-20 10:33

    何在linux进行c语言编程

    何在linux进行c语言编程
    发表于 08-20 22:55

    何在ARM进行高效C编程

    通过一定的风格来编写C程序,可以帮助C编译器生成执行速度更快的ARM代码。下面就是一些与性能相关的关键:1.对局部变量、函数参数和返回值要
    发表于 03-31 22:17

    有这10关键,在ARM高效C编程没问题!

    通过一定的方法来编写C程序,可以帮助C编译器生成执行速度更快的ARM代码。下面就是一些与性能相关的关键:1.对局部变量、函数参数和返回值要
    发表于 04-27 11:44

    有这10关键,在ARM高效C编程没问题!

    通过一定的方法来编写C程序,可以帮助C编译器生成执行速度更快的ARM代码。下面就是一些与性能相关的关键:1.对局部变量、函数参数和返回值要
    发表于 04-29 10:49

    何在ARM进行高效C编程

    何在ARM进行高效C编程? 通过一定的风格来编写C
    发表于 04-20 11:36

    何在ARM进行高效C编程

    何在ARM进行高效C编程? 通过一定的风格来编写C
    发表于 04-22 10:26

    ARM高效C编程要注意什么

    ARM高效C编程要注意什么
    发表于 03-12 06:28

    何在CPLD管理实现高效多串口中断源?

    请问如何在CPLD管理实现高效多串口中断源?
    发表于 04-13 06:10

    C语言怎么实现高效编程

    C语言怎么实现高效编程
    发表于 04-28 06:14

    何在VxWorks实现NAT/NAPT的方法

    何在VxWorks实现NAT/NAPT的方法
    发表于 03-29 12:25 19次下载

    ARM Bootloader 的实现C 和 ASM 混合编程

    ARM Bootloader 的实现C 和 ASM 混合编程
    发表于 10-30 09:28 15次下载
    <b class='flag-5'>ARM</b> Bootloader 的<b class='flag-5'>实现</b><b class='flag-5'>C</b> 和 ASM 混合<b class='flag-5'>编程</b>

    LINUX系统教程之如何在Linux系统进行编程

    本文档的主要内容详细介绍的是LINUX系统教程之如何在Linux系统进行编程主要内容包括了:程序开发过程 ,Linux编程环境和开发工具 ,Linux
    发表于 12-18 19:09 9次下载

    C++编程的经典作业和答案免费下载

    本文档的主要内容详细介绍的是C++编程的经典作业和答案免费下载。
    发表于 05-25 08:00 0次下载
    <b class='flag-5'>C</b>++<b class='flag-5'>编程</b>的经典作业和<b class='flag-5'>答案</b>免费下载

    arm单片机用什么编程 arm和51单片机编程一样吗

    ARM单片机可以使用多种编程语言进行编程,包括C语言、汇编语言、C++语言等。C语言是
    发表于 03-23 15:06 2927次阅读