0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

AI是救世主还是毒药 人工智能需要更全面的方法

7GLE_Intelzhiin 来源:未知 作者:胡薇 2018-05-25 14:18 次阅读

在5月23日旧金山举行的英特尔人工智能开发者大会上,我们介绍了有关英特尔人工智能产品组合与英特尔Nervana™神经网络处理器最新情况。这是令人兴奋的一周,英特尔人工智能开发者大会汇集了人工智能领域的顶尖人才。我们意识到,英特尔需要与整个行业进行协作,包括开发者、学术界、软件生态系统等等,来释放人工智能的全部潜力。因此,我很兴奋能够与众多业内人士同台。这包括与我们共同参与演示、研究和实践培训的开发者,也包括来自谷歌*、AWS*、微软*、Novartis*、C3 IoT*的诸多支持者。正是这种广泛的合作帮助我们一起赋能人工智能社区,为加快人工智能领域的技术创新和进步提供所需的硬件和软件支持。

Naveen Rao发表演讲

在加速向人工智能驱动的未来计算过渡之时,我们需要提供全面的企业级解决方案。这意味着我们的解决方案要提供最广泛的计算能力,并且能够支持从毫瓦级到千瓦级的多种架构。企业级的人工智能还意味着支持和扩展行业已经投资开发的工具、开放式框架和基础架构,以便更好地让研究人员在不同的人工智能工作负载中执行任务。例如人工智能开发者越来越倾向于直接针对开源框架进行编程,而不是针对具体的产品软件平台,这样有助于更快速、更高效的开发。我们在大会上发布的消息涉及所有这些领域,并公布了几家新增的合作伙伴,这都将帮助开发者和我们的客户更快速地从人工智能中受益。

针对多样化的人工智能工作负载而扩展的英特尔人工智能产品组合

英特尔近期的一项调查显示,在我们的美国企业客户中,50%以上都正在转向采用基于英特尔®至强®处理器的现有的云解决方案来满足其对人工智能的初步需求。这其实肯定了英特尔的做法——通过提供包括英特尔®至强®处理器、英特尔® Nervana™和英特尔® Movidius™技术以及英特尔® FPGAs在内的广泛的企业级产品,来满足人工智能工作负载的独特要求。

我们今天讨论的一个重要内容是对英特尔至强可扩展处理器的优化。与前一代相比,这些优化大幅提升了训练和推理性能,有利于更多公司充分利用现有基础设施,在迈向人工智能初始阶段的过程中降低总体成本。最新的英特尔Nervana神经网络处理器(NNP)系列也有更新消息分享:英特尔Nervana神经网络处理器有着清晰的设计目标,即实现高计算利用率,以及通过芯片间互联支持真正的模型并行化。行业谈论了很多有关理论峰值性能或TOP/s数字的话题;但现实是,除非架构设计上内存子系统能够支撑这些计算单元的充分利用,否则很多计算是毫无意义的。此外,业内发表的很多性能数据采用了很大的方形矩阵,但这在真实的神经网络中通常是不存在的。

英特尔致力于为神经网络开发一个平衡的架构,其中也包括在低延迟状态下实现芯片间高带宽。我们的神经网络处理器系列上进行的初步性能基准测试显示,利用率和互联方面都取得了极具竞争力的测试结果。具体细节包括:

使用A(1536, 2048)和B(2048, 1536)矩阵大小的矩阵-矩阵乘法(GEMM)运算,在单芯片上实现了高于96.4%的计算利用率1。这意味着在单芯片上实现大约38 TOP/s的实际(非理论)性能1。针对A(6144, 2048)和B(2048, 1536)矩阵大小,支持模型并行训练的多芯片分布式GEMM运算实现了近乎线性的扩展和96.2%的扩展效率2,让多个神经网络处理器能够连接到一起,并打破其它架构面临的内存限制。

在延迟低于790纳秒的情况下,我们测量到了达到89.4%理论带宽的单向芯片间传输效率3,并把它用于2.4Tb/s的高带宽、低延迟互联。

这一切是在总功率低于210瓦的单芯片中实现的,而这只是英特尔Nervana神经网络处理器原型产品(Lake Crest)。该产品的主要目标是从我们的早期合作伙伴那里收集反馈。

我们正在开发第一个商用神经网络处理器产品英特尔Nervana NNP-L1000(Spring Crest),计划在2019年发布。与第一代Lake Crest产品相比,我们预计英特尔Nervana NNP-L1000将实现3-4倍的训练性能。英特尔Nervana NNP-L1000还将支持bfloat16,这是业内广泛采用的针对神经网络的一种数值型数据格式。未来,英特尔将在人工智能产品线上扩大对bfloat16的支持,包括英特尔至强处理器和英特尔FPGA。这是整个全面战略中的一部分,旨在把领先的人工智能训练能力引入到我们的芯片产品组合中。

面向真实世界的人工智能

我们产品的广度让各种规模的机构能够轻松地通过英特尔来开启自己的人工智能之旅。例如,英特尔正在与Novartis合作,使用深度神经网络来加速高内涵筛选——这是早期药品研发的关键元素。双方的合作把训练图片分析模型的时间从11个小时缩短到了31分钟——改善了20多倍4。为了让客户更快速地开发人工智能和物联网应用,英特尔和C3 IoT宣布针对优化的AI硬软件解决方案进行合作——一个基于Intel AI技术的C3 IoT AI应用。此外,我们还正在把TensorFlow*、MXNet*、Paddle Paddle*、CNTK*和ONNX*等深度学习框架集成在nGraph之上,后者是一个框架中立的深度神经网络(DNN)模型编译器。我们已经宣布,英特尔人工智能实验室开源了面向Python*的自然语言处理库,帮助研究人员开始自己的自然语言处理算法工作。

计算的未来依赖于我们联合提供企业级解决方案的能力,通过这些解决方案企业可以充分发挥人工智能的潜力。我们迫切地希望可以与社区以及客户一起开发和部署这项变革性技术,并期待在人工智能开发者大会上拥有更精彩的体验。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 英特尔
    +关注

    关注

    61

    文章

    9982

    浏览量

    171939
  • 人工智能
    +关注

    关注

    1792

    文章

    47399

    浏览量

    238905

原文标题:英特尔Naveen Rao:不仅是CPU或者GPU,企业级人工智能需要更全面的方法

文章出处:【微信号:Intelzhiin,微信公众号:知IN】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    嵌入式和人工智能究竟是什么关系?

    应用场景。例如,在智能家居领域,嵌入式系统可以控制各种智能设备,如智能灯泡、智能空调等,而人工智能则可以实现对这些设备的
    发表于 11-14 16:39

    AI for Science:人工智能驱动科学创新》第6章人AI与能源科学读后感

    幸得一好书,特此来分享。感谢平台,感谢作者。受益匪浅。 在阅读《AI for Science:人工智能驱动科学创新》的第6章后,我深刻感受到人工智能在能源科学领域中的巨大潜力和广泛应用。这一章详细
    发表于 10-14 09:27

    AI for Science:人工智能驱动科学创新》第4章-AI与生命科学读后感

    很幸运社区给我一个阅读此书的机会,感谢平台。 《AI for Science:人工智能驱动科学创新》第4章关于AI与生命科学的部分,为我们揭示了人工智能技术在生命科学领域中的广泛应用和
    发表于 10-14 09:21

    AI for Science:人工智能驱动科学创新》第二章AI for Science的技术支撑学习心得

    ,推动科学研究的深入发展。 总结 通过阅读《AI for Science:人工智能驱动科学创新》第二章,我对AI for Science的技术支撑有了更加全面和深入的理解。我深刻认识到
    发表于 10-14 09:16

    AI for Science:人工智能驱动科学创新》第一章人工智能驱动的科学创新学习心得

    人工智能:科学研究的加速器 第一章清晰地阐述了人工智能作为科学研究工具的强大功能。通过机器学习、深度学习等先进技术,AI能够处理和分析海量数据,发现传统方法难以捕捉的模式和规律。这不
    发表于 10-14 09:12

    risc-v在人工智能图像处理应用前景分析

    满足人工智能图像处理中对于高性能、低功耗和特定功能的需求。 低功耗 : 在人工智能图像处理中,低功耗是一个重要的考量因素。RISC-V架构的设计使其在处理任务时能够保持较低的功耗水平,这对于需要
    发表于 09-28 11:00

    人工智能ai 数电 模电 模拟集成电路原理 电路分析

    人工智能ai 数电 模电 模拟集成电路原理 电路分析 想问下哪些比较容易学 不过好像都是要学的
    发表于 09-26 15:24

    人工智能ai4s试读申请

    目前人工智能在绘画对话等大模型领域应用广阔,ai4s也是方兴未艾。但是如何有效利用ai4s工具助力科研是个需要研究的课题,本书对ai4s基本
    发表于 09-09 15:36

    名单公布!【书籍评测活动NO.44】AI for Science:人工智能驱动科学创新

    ! 《AI for Science:人工智能驱动科学创新》 这本书便将为读者徐徐展开AI for Science的美丽图景,与大家一起去了解: 人工智能究竟帮科学家做了什么?
    发表于 09-09 13:54

    报名开启!深圳(国际)通用人工智能大会将启幕,国内外大咖齐聚话AI

    8月28日至30日,2024深圳(国际)通用人工智能大会暨深圳(国际)通用人工智能产业博览会将在深圳国际会展中心(宝安)举办。大会以“魅力AI·无限未来”为主题,致力于打造全球通用人工智能
    发表于 08-22 15:00

    微处理器在人工智能面的应用

    微处理器在人工智能AI)方面的应用日益广泛且深入,成为了推动AI技术发展的重要力量。本文将从微处理器在AI中的核心作用、具体应用案例、技术
    的头像 发表于 08-22 14:21 1012次阅读

    人工智能在军事方面的应用

    智慧华盛恒辉人工智能在军事方面的应用广泛且深入,主要包括以下几个方面: 智慧华盛恒辉一、作战效能提升 自动目标识别与跟踪: 人工智能系统能够在复杂环境中准确识别和跟踪目标,提高作战效率。利用图像识别
    的头像 发表于 07-16 09:52 600次阅读

    超级电容成新能源汽车救世主

    超级电容成新能源汽车救世主?超级电容的特色储能功效彰显。日前,行业领军企业--集星科技在中国无人驾驶航空器系统展会展出无人机启动电源解决方案,吸引了与会各方关注。因为超级电容具有输出功率密度高
    的头像 发表于 06-28 11:25 417次阅读
    超级电容成新能源汽车<b class='flag-5'>救世主</b>?

    5G智能物联网课程之Aidlux下人工智能开发(SC171开发套件V1)

    机器人案例.pdf 人工智能 AI泛边缘:智能安防实训 31分38秒 https://t.elecfans.com/v/25509.html *附件:泛边缘案例课.pdf 人工智能
    发表于 04-01 10:40

    嵌入式人工智能的就业方向有哪些?

    。 国内外科技巨头纷纷争先入局,在微软、谷歌、苹果、脸书等积极布局人工智能的同时,国内的BAT、华为、小米等科技公司也相继切入到嵌入式人工智能的赛道。那么嵌入式AI可就业的方向有哪些呢? 嵌入式
    发表于 02-26 10:17