0 引言
随着物联网的蓬勃发展,射频识别芯片RFID迎来了爆发式的增长需求,EEPROM作为RFID芯片中核心部件,也被提出了低电源电压、高密度、高可靠性等要求。随着工艺尺寸的进一步减小,电路的工作电压也在不断降低,但是EEPROM的擦写操作需要的15 V高压一直不变,其中15.5 V高压器件的阈值电压接近于EEPROM的正常工作电压[1-3];另外,存储单元的擦写电压窗口随温度的降低而减小,降低了芯片在低温条件下的可靠性。基于以上原因,设计了一款可以工作在低电源电压条件下,同时产生具有温度补偿特性的擦写高压的电荷泵电路;通过对高压电路的设计改进,提升了EEPROM的可靠性。
本设计的高压产生电路如图1所示,包括时钟驱动电路、电压倍乘电路、电荷泵电路以及电压稳压电路。电压倍乘电路将最低为1.3 V的电源电压倍乘,用来驱动高压电荷泵电路。时钟驱动电路产生30 MHz的非交叠两相时钟用来驱动电荷泵。电荷泵电路通过从电压倍乘电路抽取电荷产生15 V的高压。电压稳压电路包括分压电路和比较器,实现高压电荷泵的输出高压稳定在15 V,同时产生一个反馈控制信号VFLAG。
当电荷泵输出高压大于15 V时,分压电路得到的反馈电压大于基准电压,VFLAG等于0,控制时钟驱动电路停止工作。同样,当电荷泵输出高压小于15 V时,反馈信号小于基准电压,VFLAG等于电源电压,控制时钟电路开始工作,使得电荷泵输出高压上升,从而实现输出高压稳定在一个合理的设计值。
电荷泵是高压产生电路中的核心部件。最早的片上电荷泵电路基于Dickson结构[4],该结构采用电容实现电荷从上一级传递到下一级;然而,器件的高阈值电压及其体效应限制了电荷泵的增益,因此该结构不适用于低电源电压环境。
本论文中,采用电压倍乘电路,得到两倍于电源的电压用来驱动主电荷泵电路,实现了高压产生电路的低电源电压工作[5]。同时,采用具有负温度系数特性的分压电路,实现电荷泵电路输出电压的负温度特性,解决了EEPROM在低温条件下可靠性降低的问题。
1 升压电路
1.1 电压倍乘电路
图2中,M1、M2是交叉连接的Native NMOS器件,其漏端neta、netb分别通过各自的电荷泵电容C1、C2连接至时钟CLK及其不交叠反相时钟CLKB。PMOS器件M5、M6为所有PMOS器件M3~M6提供合适的衬底电压。M3、M4交叉连接构成输出级。当CLK为低电平时,M1、M3导通,M2、M4截止,此时节点neta的电压等于输入电压VIN。当CLK出现上升沿后,M1~M4全部截止,由于neta没有充、放电通道,其电压被抬高至VIN+VCLK,其中VCLK为时钟CLK的幅度。因此,M1、M3截止,M2、M4导通。理想条件下,VOUT等于两倍的电源电压。该电路具有内部节点电压不随时钟信号跳变而大幅度变化的特点。
1.2 电荷泵电路
电压倍乘电路都有一个输入电压和一个输出电压,结果等于VOUT=VIN+VCLK。在理想情况下,将N个电压倍乘电路作为子单元级联起来就可以得到大小为(N+1)·VDD的电压[6]。高压电荷泵电路如图3所示。
本设计中,电荷泵电路由10级电压倍乘电路组成,其中第一级的输入电压为VDD,所有级的时钟电压幅度为电压倍乘电路的输出电压,约为2·VDD。
因此,理想条件下电荷泵输出电压VPPH的理想值为:
由于体效应、高压漏电等非理想因素的影响,电荷泵的输出高压达不到式(1)中的理想值。
1.3 电压稳压电路
为了防止过高的高压损坏存储器件,降低EEPROM的可靠性,需要稳定电荷泵的输出高压。通常在高压产生电路中增加电压稳压电路,如图1所示。当分压电路产生的反馈信号VFB高于带隙基准源产生的参考电压VREF时,比较器输出逻辑‘0’,关闭电荷泵电路的驱动时钟。同样,当反馈信号低于VREF时,比较器输出逻辑‘1’,时钟驱动电路、电荷泵正常工作。
为实现高压信号VPPH与温度负相关,设计了分压比随温度变化的分压电路。当温度升高时,分压电路中的二极管压降减小,而温度升高时,二极管压降升高,使得VPPH随温度的升高而降低。
2 实验结果
2.1 仿真结果
本文中的高压产生电路在0.13 μm CMOS Embedded EEPROM工艺上实现,工作最小电压1.3 V,时钟频率30 MHz,负载电容为50 pF。
高压产生电路VPPH的仿真结果如图4所示,其中VBOOST信号为电压倍乘电路的输出电压,用来向高压电荷泵中电容提供电荷的驱动电压;VPPH的大小为15 V。
2.2 测试结果
高压产生电路作为EEPROM的一部分已经在0.13 μm CMOS Embedded工艺上完成制备,面积大小为800 μm×60 μm。
图5显示了高压产生电路的高压输出VPPH随温度变化的测量结果。可以看到,电压VPPH在整个工作温度范围内(-40 ℃~85 ℃),随温度线性变化约为200 mV,提升了存储器在低温下的擦写窗口,使得存储器的低温可靠性得到提升。
3 结论
在本文中,设计并制备了一个应用于EEPROM的低电源电压工作的高压产生电路。测量结果显示电荷泵在1.3 V~1.65 V的电源下正常工作;同时采用负温度特性的电压分压电路,实现电荷泵的高压输出具有负温度特性,补偿了存储器件的电压窗口随温度变化的问题,提升了低温条件下的存储器可靠性。
-
RFID
+关注
关注
388文章
6176浏览量
238130 -
EEPROM
+关注
关注
9文章
1023浏览量
81728 -
电荷泵
+关注
关注
3文章
239浏览量
29621
发布评论请先 登录
相关推荐
评论