0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

从零开始学习用Python构建神经网络

人工智能和机器人研究院 来源:未知 作者:胡薇 2018-05-30 08:54 次阅读

这是一份用于理解深度学习内部运作方式的初学者指南。作者根据自己从零开始学习用 Python 构建神经网络的经验,编写了一份攻略。内容涵盖神经网络定义、损失函数、前向传播、反向传播、梯度下降算法,对于想要了解深度学习运作原理的各位来说,内容精彩不可错过。

动机:为了深入了解深度学习,我决定从零开始构建神经网络,并且不使用类似 Tensorflow 的深度学习库。我相信,对于任何有理想的数据科学家而言,理解神经网络内部的运作方式都非常重要。

本文涵盖了我学到的所有东西,希望你也能从中获益!

什么是神经网络?

许多有关神经网络的介绍资料会将神经网络与大脑进行类比。但我发现,将神经网络简单地描述为一个从输入映射到输出的数学函数理解起来更容易。

神经网络由以下部分组成:

一个输入层,x

任意数量的隐藏层

一个输出层,ŷ

每两层之间都有一组权重和偏置,W 和 b

每个隐藏层都要选择一个激活函数 σ。在本文中,我们选用 Sigmoid 激活函数。

下图展示了 2 层神经网络的结构(请注意,在计算神经网络层数的时候,通常不计入输入层)。

二层神经网络的结构

利用 Python 建立神经网络非常容易。

class NeuralNetwork: def __init__(self, x, y): self.input = x self.weights1 = np.random.rand(self.input.shape[1],4) self.weights2 = np.random.rand(4,1) self.y = y self.output = np.zeros(y.shape)

训练神经网络

一个简单 2 层神经网络的输出 ŷ 可以表示为:

你可能注意到,在上面的等式当中,权重 W 和偏置 b 是影响输出 ŷ 的唯一变量。

自然,权重和偏差的正确值决定了预测的强度。根据输入数据微调权重和偏置的过程称为神经网络训练。

训练过程的每一次迭代包含以下步骤:

计算预测的输出 ŷ,称为前向传播

更新权重和偏置,称为反向传播

以下流程图说明了这个过程:

前向传播

正如我们在上图中所看到的,前向传播只是一个简单的计算。对于一个基本的 2 层神经网络,神经网络的输出计算如下:

我们可以在 Python 代码中添加一个前向传播函数来做到这一点。简单起见,我们假设偏置为 0。

class NeuralNetwork: def __init__(self, x, y): self.input = x self.weights1 = np.random.rand(self.input.shape[1],4) self.weights2 = np.random.rand(4,1) self.y = y self.output = np.zeros(self.y.shape) def feedforward(self): self.layer1 = sigmoid(np.dot(self.input, self.weights1)) self.output = sigmoid(np.dot(self.layer1, self.weights2))

然而,我们仍然需要一种方法来评估我们的预测的「优秀程度」(即,我们的预测与真实值相差多少?)这就需要用到损失函数了。

损失函数

损失函数有很多种,而我们问题的性质会决定我们使用哪种损失函数。在本文中,我们将采用简单的误差平方和。

误差平方和,即每个预测值和真实值之间差值的平均值。这个差值是取了平方项的,所以我们测量的是差值的绝对值。

在训练过程中,我们的目标是找到一组最佳的权重和偏置,使损失函数最小化。

反向传播

现在,我们已经找到了预测误差的方法(损失函数),那么我们需要一种方法将错误「传播」回去,从而更新权重和偏置。

为了确定权重和偏置调整的适当值,我们需要知道损失函数对权重和偏置的偏导数。

从微积分的角度来看,函数的偏导数也就是函数的斜率。

梯度下降算法

如果我们知道了偏导数,我们可以通过简单增加或减少偏导数(如上图所示)的方式来更新权重和偏置。这就是所谓的梯度下降。

然而,由于损失函数的方程不包含权重和偏置,所以我们不能直接计算损失函数对权重和偏置的偏导数。因此,我们需要链式法则来帮助计算。

以上是用于计算损失函数对权重偏导数的链式法则。简单起见,我们只展示了一层神经网络的偏导数。

唷!这看起来不大好看,但这能让我们获得所需——损失函数对权重的偏导数(斜率),以便相应调整权重。

既然我们已经有了链式法则公式,接下来我们把反向传播函数添加到 Python 代码中。

class NeuralNetwork: def __init__(self, x, y): self.input = x self.weights1 = np.random.rand(self.input.shape[1],4) self.weights2 = np.random.rand(4,1) self.y = y self.output = np.zeros(self.y.shape) def feedforward(self): self.layer1 = sigmoid(np.dot(self.input, self.weights1)) self.output = sigmoid(np.dot(self.layer1, self.weights2)) def backprop(self): # application of the chain rule to find derivative of the loss function with respect to weights2 and weights1 d_weights2 = np.dot(self.layer1.T, (2*(self.y - self.output) * sigmoid_derivative(self.output))) d_weights1 = np.dot(self.input.T, (np.dot(2*(self.y - self.output) * sigmoid_derivative(self.output), self.weights2.T) * sigmoid_derivative(self.layer1))) # update the weights with the derivative (slope) of the loss function self.weights1 += d_weights1 self.weights2 += d_weights2

整合

既然我们已经有了做前向传播和反向传播的完整 Python 代码,我们可以将神经网络应用到一个示例中,看看它的效果。

我们的神经网络应该能够习得理想的权重集合以表示这个函数。请注意,对于我们来说,仅通过检查来计算权重并非一件小事。

如果我们将神经网络进行 1500 次迭代,看看会发生什么。下图展示了每次迭代的损失函数值,我们可以清晰地发现损失函数单调下降到最小值。这与我们前面讨论的梯度下降算法是一致的。

让我们看看神经网络在进行 1500 次迭代后的最终预测(输出):

进行 1500 次迭代后的预测值

我们成功了!我们的前向传播和反向传播算法成功训练了神经网络,且预测值收敛到了真实值。

请注意,预测值和真实值之间还是有一些轻微差异的。这是可取的,因为它防止了过度拟合,并且使得神经网络具有更强的泛化能力。

下一步

幸运的是,我们的探索还没有结束。关于神经网络和深度学习还有很多需要学习的地方。例如:

除了 Sigmoid 函数之外,我们还可以使用哪些激活函数?

在训练神经网络时使用学习率

使用卷积进行图像分类任务

最后一点想法

在撰写此文的过程中,我已经学到了很多,希望本文也能对你有所帮助。

在没有完全了解神经网络内部工作原理的情况下,虽然使用诸如 TensorFlow 和 Keras 之类的深度学习库可以让我们很容易地建立深度网络,但我认为对于有抱负的数据科学家而言,深入理解神经网络还是大有裨益的。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • python
    +关注

    关注

    56

    文章

    4784

    浏览量

    84500
  • 深度学习
    +关注

    关注

    73

    文章

    5495

    浏览量

    121042

原文标题:无需深度学习框架,如何从零开始用Python构建神经网络

文章出处:【微信号:gh_ecbcc3b6eabf,微信公众号:人工智能和机器人研究院】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    如何使用Python构建LSTM神经网络模型

    构建一个LSTM(长短期记忆)神经网络模型是一个涉及多个步骤的过程。以下是使用Python和Keras库构建LSTM模型的指南。 1. 安装必要的库 首先,确保你已经安装了
    的头像 发表于 11-13 10:10 190次阅读

    如何构建多层神经网络

    构建多层神经网络(MLP, Multi-Layer Perceptron)模型是一个在机器学习和深度学习领域广泛使用的技术,尤其在处理分类和回归问题时。在本文中,我们将深入探讨如何从头
    的头像 发表于 07-19 17:19 751次阅读

    Python自动训练人工神经网络

    人工神经网络(ANN)是机器学习中一种重要的模型,它模仿了人脑神经元的工作方式,通过多层节点(神经元)之间的连接和权重调整来学习和解决问题。
    的头像 发表于 07-19 11:54 328次阅读

    如何构建三层bp神经网络模型

    引言 BP神经网络(Backpropagation Neural Network)是一种前馈神经网络,通过反向传播算法进行训练。三层BP神经网络由输入层、隐藏层和输出层组成,具有较好的泛化能力和
    的头像 发表于 07-11 10:55 393次阅读

    BP神经网络学习机制

    BP神经网络(Backpropagation Neural Network),即反向传播神经网络,是一种基于梯度下降算法的多层前馈神经网络,其学习机制的核心在于通过反向传播算法
    的头像 发表于 07-10 15:49 487次阅读

    BP神经网络和卷积神经网络的关系

    BP神经网络(Backpropagation Neural Network)和卷积神经网络(Convolutional Neural Network,简称CNN)是两种在人工智能和机器学习领域
    的头像 发表于 07-10 15:24 1301次阅读

    PyTorch神经网络模型构建过程

    PyTorch,作为一个广泛使用的开源深度学习库,提供了丰富的工具和模块,帮助开发者构建、训练和部署神经网络模型。在神经网络模型中,输出层是尤为关键的部分,它负责将模型的预测结果以合适
    的头像 发表于 07-10 14:57 467次阅读

    深度神经网络与基本神经网络的区别

    在探讨深度神经网络(Deep Neural Networks, DNNs)与基本神经网络(通常指传统神经网络或前向神经网络)的区别时,我们需要从多个维度进行深入分析。这些维度包括
    的头像 发表于 07-04 13:20 727次阅读

    神经网络的基本原理及Python编程实现

    神经网络作为深度学习算法的基本构建模块,模拟了人脑的行为,通过互相连接的节点(也称为“神经元”)实现对输入数据的处理、模式识别和结果预测等功能。本文将深入探讨
    的头像 发表于 07-03 16:11 556次阅读

    卷积神经网络和bp神经网络的区别

    化能力。随着深度学习技术的不断发展,神经网络已经成为人工智能领域的重要技术之一。卷积神经网络和BP神经
    的头像 发表于 07-02 14:24 3203次阅读

    使用PyTorch构建神经网络

    PyTorch是一个流行的深度学习框架,它以其简洁的API和强大的灵活性在学术界和工业界得到了广泛应用。在本文中,我们将深入探讨如何使用PyTorch构建神经网络,包括从基础概念到高级特性的全面解析。本文旨在为读者提供一个完整的
    的头像 发表于 07-02 11:31 671次阅读

    基于神经网络算法的模型构建方法

    神经网络是一种强大的机器学习算法,广泛应用于各种领域,如图像识别、自然语言处理、语音识别等。本文详细介绍了基于神经网络算法的模型构建方法,包括数据预处理、
    的头像 发表于 07-02 11:21 471次阅读

    构建神经网络模型方法有几种

    构建神经网络模型是深度学习领域的核心任务之一。本文将详细介绍构建神经网络模型的几种方法,包括前飨神经网络
    的头像 发表于 07-02 10:15 318次阅读

    如何使用Python进行神经网络编程

    。 为什么使用PythonPython是一种广泛使用的高级编程语言,以其易读性和易用性而闻名。Python拥有强大的库,如TensorFlow、Keras和PyTorch,这些库提供了构建
    的头像 发表于 07-02 09:58 374次阅读

    详解深度学习神经网络与卷积神经网络的应用

    在如今的网络时代,错综复杂的大数据和网络环境,让传统信息处理理论、人工智能与人工神经网络都面临巨大的挑战。近些年,深度学习逐渐走进人们的视线,通过深度
    的头像 发表于 01-11 10:51 1956次阅读
    详解深度<b class='flag-5'>学习</b>、<b class='flag-5'>神经网络</b>与卷积<b class='flag-5'>神经网络</b>的应用