0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

3D Xpoint将掀起人工智能领域一场革命

测试测试测试 来源:网络整理 作者:工程师李察 2018-06-17 10:13 次阅读

导读: 5月21日,美光公司举行了年度分析师和投资者会议。 尽管很多人都希望获得更多关于3D XPoint技术的信息,美光的管理层依然对此秘而不宣。 我们将在本文讨论机器学习,它意味着什么,以及哪种硬件类型最适合机器学习应用。

5月21日,美光公司举行了年度分析师和投资者会议。

尽管很多人都希望获得更多关于3D XPoint技术的信息,美光的管理层依然对此秘而不宣。

我们将在本文讨论机器学习,它意味着什么,以及哪种硬件类型最适合机器学习应用。

最后,我们将推测美光正在从事的工作,以及他们可以在2019年向AI领域推出什么样的增值解决方案。我们认为美光肯定在准备一颗大***。

近日,美光举行了年度分析师和投资者会议,会议上公开了许多令人兴奋的爆炸性信息,包括一个100亿美元的股票回购计划,以及关于美光在DRAM和NAND市场地位和角色定位的大量讨论,随后,许多文章深度报道了此次会议的诸多信息。在这次投资者大会上,一个显而易见的事情是,美光并没有透漏大家所关心的3D XPoint技术的任何细节。美光公司首席执行官Sanjay Mehrotra在其演讲中提到了3D XPoint,并暗示称公司计划在2019年开始发售3D XPoint器件。

3D XPoint是一项可带来10倍性能提升的激动人心的技术。与DRAM相比,3D XPoint芯片的密度更高,耐久能力比NAND提高了上千倍,速度也比NAND快上千倍。这种技术特性给3D XPoint提供了一个重要的价值主张和市场定位,它可以充当层次结构的内存和存储之间的解决方案。我们正在与客户在产品开发方面进行合作,正如我们前面所说,我们将于2019年推出3D XPoint产品,并在2019年下半年开始出货这些产品。

公司首席业务官SumitSadana也重申,因为他们现在正在和合作伙伴们一起开发3D XPoint产品,因此还没有做好讨论3D XPoint技术细节的准备。

我今天不会就我们的3D XPoint产品提供更多细节,因为我们明年将推出这些产品,而且,出于竞争的原因,我也不希望泄露我们和客户正在进行的一些工作。

在本文中,我们将简要解释人工智能特别是机器学习如何在现实生活中发挥相关作用,并基于我们对机器学习的深入了解和美光团队的公开声明,推测3D XPoint的未来。

AI和机器学习是什么?

首先,我们来看看人工智能和机器学习的含义。AI是一个通用的术语,适用于任何一种允许计算机执行通常由人类执行的任务的技术。这方面的例子林林总总,从下棋到分拣邮件,从识别猫狗图片到车辆驾驶等。

机器学习(简称ML)是AI的一个分支。这种技术通过向计算机显示一组输入和预期的输出,让计算机从这些输入输出的集合中“学习”如何执行特定任务来创建AI。

比如,假设你想训练一台计算机识别猫的照片。处理这项任务的一种方法是描述非常详细的启发式规则,以确定某张照片是否是猫的图片。

在规则中,你可能会指定猫有毛茸茸的皮、尖尖的耳朵。但是,不一定每只猫的耳朵都尖尖的,甚至有的猫皮秃毛稀。这就使得基于规则的AI方法很难处理,尤其是遇到特征不明显的案例时。

相比之下,ML方法依赖于向计算机显示成千上万张不同猫的图片,并让计算机自己制定猫的规则。对于图像识别而言,当今最常用的模型基于神经网络技术。本文并不打算详细讨论神经网络是如何工作的,不过下面提供了一个这样的神经网络的简化图,它可以帮助你思考一下,为什么ML和内存和存储大有关系。

3D Xpoint将掀起人工智能领域一场革命

上面这张图被简化用来显示一张9x9像素的图片。实际案例会涉及到更大的输入集,使用数十万甚至数百万个特征。

现在我们至少在概念上对神经网络的外观有了一些了解,下面让我们回到那个猫的例子上。

用于训练的猫的图片被归一化为特定大小,然后分解成像素,将这些像素的值输入ML模型中。该模型执行前向传播(模型考虑给予它的输入是否是猫的照片),并输出图片是猫的可能性的概率。

在训练阶段,模型会被告知它的回答是否正确。所以,如果给模型的图片确实是一只猫,并且模型回答正确,那么这个模型就会得到加强。反之,如果模型回答错误,那么通过反向传播算法对模型进行惩罚(正确答案和模型给出的答案之间的差异),调整一些个体的权重,以期下一次回答时会更好。

硬件要求

计算神经网络中给定预测的成本的数学公式,Zynath Capital提供。

前向传播和后向传播的数学计算相当复杂,也超出了本文的范围,读者只需要注意一点,即这些计算需要数以千计的线性代数运算。 如果你记得高中或大学阶段的线性代数课程,就会了解到,在这种数学运算中,大数据集会被组织成矩阵和向量。这也就解释了为什么GPU在机器学习应用中如此受欢迎。线性代数可以很容易地并行化,而且GPU在并行数学计算方面非常出色。

这个过程涉及的内存大小有点不直观。 举例来说,假设猫的照片是一张1,000 x 1,000像素的图片,按照今天的标准,这是一幅非常小的图片,但是,这样一幅图片也有超过一百万个单独的特征(像素),并且每个像素都必须由CPU进行处理,以便评估图片的“猫腻”。

现在,您应该已经了解了所述计算模型在一张图片上需要做多少计算和处理,想象一下,现实世界中需要在成百上千万张图片的数据集上进行相同操作,数据集规模达到2TB或3TB以上的情况并不少见,特别是在我们谈论诸如遗传学和天体物理等领域的时候。

为了快速训练模型,您需要将尽可能多的数据集加载到内存(RAM)中,以便功能强大的GPU和CPU可以执行并行化的计算任务。现在的CPU性能如此强大,以至于向CPU提供数据这个步骤成了瓶颈。一直以来,我们都是通过增加系统的DRAM容量,并将正在使用的数据集预先加载到DRAM中来解决这个问题。

SumitSadana在他的发言中谈到了这个确切的问题:

“在云公司内部,一个众所周知的事情是,处理器需要花费大量的时间等待数据。随着这些新兴处理器内核数量在过去几年内的大幅增加,相对来讲这些处理器的附属内存容量并没有增加太多,这就意味着每个内核可以使用的内存带宽容量是实际下降的。”

DRAM还要一个显著的缺点-易失性。想象一下,你花费了数天时间,投入了大量的CPU和电力资源来为你的新的和革命性的识别猫ML模型计算新权重,结果大楼电源断电,后者由于某些硬件或软件相关原因需要重启计算机,显然,你会丢掉DRAM中的一切数据,你的模型会回归到最原始的认为桌子也是一只猫的阶段(因为桌子也有四条腿)。这正是3D XPoint的用武之地。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • AI
    AI
    +关注

    关注

    87

    文章

    31054

    浏览量

    269407
  • 人工智能
    +关注

    关注

    1792

    文章

    47387

    浏览量

    238900
  • 机器学习
    +关注

    关注

    66

    文章

    8423

    浏览量

    132757
收藏 人收藏

    评论

    相关推荐

    嵌入式和人工智能究竟是什么关系?

    人工智能的结合,无疑是科技发展中的一场革命。在人工智能硬件加速中,嵌入式系统以其独特的优势和重要性,发挥着不可或缺的作用。通过深度学习和神经网络等算法,嵌入式系统能够高效地处理大量数
    发表于 11-14 16:39

    《AI for Science:人工智能驱动科学创新》第6章人AI与能源科学读后感

    幸得好书,特此来分享。感谢平台,感谢作者。受益匪浅。 在阅读《AI for Science:人工智能驱动科学创新》的第6章后,我深刻感受到人工智能在能源科学领域中的巨大潜力和广泛应
    发表于 10-14 09:27

    AI for Science:人工智能驱动科学创新》第4章-AI与生命科学读后感

    阅读这章后,我深感人工智能与生命科学的结合正引领着一场前所未有的科学革命,以下是我个人的读后感: 1. 技术革新与生命科学进步 这章详细
    发表于 10-14 09:21

    《AI for Science:人工智能驱动科学创新》第人工智能驱动的科学创新学习心得

    ,无疑为读者铺设了条探索人工智能(AI)如何深刻影响并推动科学创新的道路。在阅读这章后,我深刻感受到了人工智能技术在科学领域的广泛应用潜
    发表于 10-14 09:12

    risc-v在人工智能图像处理应用前景分析

    的兼容性和可靠性,并为其在人工智能图像处理领域的应用提供更有力的保障。 综上所述,RISC-V在人工智能图像处理领域具有广阔的应用前景。其开源性、灵活性、低功耗和高性能等特点使得它成为
    发表于 09-28 11:00

    名单公布!【书籍评测活动NO.44】AI for Science:人工智能驱动科学创新

    ! 《AI for Science:人工智能驱动科学创新》 这本书便将为读者徐徐展开AI for Science的美丽图景,与大家起去了解: 人工智能究竟帮科学家做了什么? 人工智能
    发表于 09-09 13:54

    NEO推出3D X-AI芯片,AI性能飙升百倍

    近日,半导体行业的创新先锋NEO Semiconductor震撼发布了革命性技术——3D X-AI芯片,这项技术旨在彻底颠覆人工智能处理领域
    的头像 发表于 08-21 15:45 652次阅读

    FPGA在人工智能中的应用有哪些?

    FPGA(现场可编程门阵列)在人工智能领域的应用非常广泛,主要体现在以下几个方面: 、深度学习加速 训练和推理过程加速:FPGA可以用来加速深度学习的训练和推理过程。由于其高并行性和低延迟特性
    发表于 07-29 17:05

    裸眼3D笔记本电脑——先进的光裸眼3D技术

    随着科技的不断进步,裸眼3D技术已经不再是科幻电影中的幻想。如今,英伦科技裸眼3D笔记本电脑前沿科技带到了我们的日常生活中。无论你是专业的3D
    的头像 发表于 07-16 10:04 568次阅读

    Python在人工智能领域的应用

    在当今这个科技日新月异的时代,人工智能(AI)已经渗透到我们生活的方方面面,从智能家居到自动驾驶,从智能医疗到金融风控,无不体现着AI的力量。而在这
    的头像 发表于 07-02 18:20 1167次阅读

    英伦科技裸眼3D平板电脑:革新视觉体验,重塑价格优势

    在科技的浪潮中,我们总是追求更加震撼的感官体验。如今,英伦科技裸眼3D平板电脑凭借其独特的技术优势和亲民的价格,正悄然引领一场视觉革命。今天,我们就来深入探讨这款产品的两大亮点:裸眼直接观看3
    的头像 发表于 06-11 09:30 384次阅读
    英伦科技裸眼<b class='flag-5'>3D</b>平板电脑:革新视觉体验,重塑价格优势

    什么是光裸眼3D

    裸眼3D技术,是种无需任何辅助设备(如3D眼镜或头显)即可产生真实三维效果的技术。它通过特殊的显示设备,精确控制光线的方向和强度,使观察者在不同的角度都能看到清晰、连续的立体图像
    的头像 发表于 05-27 14:21 1157次阅读
    什么是光<b class='flag-5'>场</b>裸眼<b class='flag-5'>3D</b>?

    天马微电子首发TIANMA META SIGHT光3D解决方案

    3D显示领域,视角的大小和画面的稳定性直是行业内的难题,TIANMA META SIGHT 3D显示器采用了先进的追踪式超多视点技术
    的头像 发表于 05-23 10:21 519次阅读
    天马微电子首发TIANMA META SIGHT光<b class='flag-5'>场</b><b class='flag-5'>3D</b>解决方案

    Cerebras推出性能翻倍的WSE-3 AI芯片

    Cerebras Systems近日推出的Wafer Scale Engine 3(WSE-3)芯片无疑在人工智能领域掀起
    的头像 发表于 03-20 11:32 928次阅读

    嵌入式人工智能的就业方向有哪些?

    嵌入式人工智能的就业方向有哪些? 在新轮科技革命与产业变革的时代背景下,嵌入式人工智能成为国家新型基础建设与传统产业升级的核心驱动力。同时在此背景驱动下,众多名企也纷纷在嵌入式
    发表于 02-26 10:17