0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

可解释的人工智能会加速人们对AI的使用

8gVR_D1Net08 来源:未知 作者:胡薇 2018-06-08 14:24 次阅读

随着越来越多的企业使用人工智能(AI)为其做出决策,这使得治理工作变得至关重要,并且人工智能推理路径的可追溯性成为建立客户、员工、监管机构和其他关键利益相关方信任的关键。

人工智能(AI)将计算范式从基于规则的编程转变为基于结果的方法。它允许流程进行大规模运行,减少了人为处理错误的数量,并创造了解决问题的一些新方法。在围棋高手已使用相同的开局策略3000年后,阿尔法狗(AlphaGo)启发了围棋选手去尝试新的策略。随着人工智能采用率的增加,它将帮助组织解决传统自动化技术无法解决的“最后一公里”问题。但随着越来越多的企业让人工智能来为其作出决策,治理工作将变得非常关键。

最近,在简柏特公司(Genpact)针对最高管理层和其他高管人员的一项调查中,有63%的人表示,能够追踪一台使用人工智能设备的推理路径,这是非常重要或关键的,而在人工智能领域处于领先地位的公司中,持这一观点的人数比例达到88%。简柏特公司还与受管制市场中的财富500强企业合作,这些客户认为,在考虑使用人工智能之前,其推理的可追溯性将是一项关键要求。

|| 为加强监管审查工作做好准备

最近,英国剑桥分析公司(Cambridge Analytica)对社交媒体数据的滥用,引起了公众的关注,该事件唤醒了企业对监管治理工作的更高要求。此外,欧盟的一般数据保护条例(GDPR)在5月25日已生效,这将解决数据和人工智能治理问题的诸多新要求。如该条例第22条所述,在其他领域中,“数据主体有权不受限于自动流程所做出的决定,包括对其产生法律效力或对其产生严重影响的分析。”在一个人被拒绝发放贷款或工作机会的情况下,这可能变得至关重要。同样,纽约市最近的算法决策透明度立法表明,美国的监管审查工作也在加强。在这种形式下,企业会很难接受“黑匣子人工智能”。

|| 期待可追踪的人工智能技术

目前,一些技术已经足够成熟,可以提供可追溯性。在处理文本或数字时,企业可以考虑使用计算语言学,用户可以轻松地追踪推理路径并精确定位导致机器决定的单词或数据点。例如,如果第三方物流供应商同意每英里收取15美分,但其发票显示为每英里收取18美分,则机器可以利用上下文语境来提取发票中的价格和合同所约定的价格,并指出其差异。用户可以对比查看这些文件以确定机器是否判断正确。关键在于可跟踪某一决定的定义属性来自哪里,并以易于可视化的方式提供底层信息

|| 提供推理路径

实现可追溯性的另一种方式是解释在算法中的一些驱动因素和推理路径。Salesforce公司销售云爱因斯坦(Sales Cloud Einstein)产品中的主要评分功能可以让你直接了解其如何给出销售机会的分数,因此,一个公司的销售团队可以了解Einstein产品是如何预测某个销售机会转化为商机的。

计算语言学也有一个嵌入的推理路径逻辑,可以为使用技术的最终用户进行外化。例如,在贷款审批流程中,系统需要采取多个步骤来处理一个申请。如果某个申请在基于人工智能的自动化贷款申请过程中被拒绝,信贷员应该能够追溯到导致发生拒绝申请的特定步骤,更重要的是,可以解释为何人工智能在该步骤做出这样的决定。

因此,企业可以通过向消费者解释推理路径为什么会做出一个决定,而不只是简单地拒绝发放贷款,从而可能导致不良客户的体验和引发合规问题。因为具备可追溯性,当审计人员要求查看文档,或者客户提出询问,或者出现了其他潜在问题,那么企业就可以准确知道系统在何处以及如何做出该决定,而不是因为该决定和推理被锁在黑匣子里,导致一无所知。

|| 为充分利用人工智能而设计数据

关键是要充分了解数据的行为。这不仅仅是为了实现人工智能算法,首先要建立起有效的数据工程。最佳实践包括记录关于数据完整性的假设,解决数据偏差,以及在实施前审查机器所确定的新规则。如果企业正在使用机器学习技术来识别异常情况,那么它可以通过检查和权衡来手动测试并确定这些结果是否合理。在设计和测试人工智能时,让熟知这些流程和行业领域问题的人来参与,这也很重要。

|| 可解释的人工智能会加速人们对人工智能的使用

可追溯性还解决了人工智能技术实施中的几项难题。首先,它侧重于这种先进技术的新兴应用的质量问题。其次,在人与机器交互的发展过程中,可追溯性使结果更易于被人理解,并有助于推动人工智能的使用和促进成功实施所需的相关变更管理。第三,它有助于推动生命科学、医疗保健和金融服务等受监管行业的合规性。

可追溯性存在于一些更成熟的人工智能应用中,例如计算语言学。在其他不太成熟的新兴技术中,所谓的黑盒问题仍然存在。这一问题主要存在于深度神经网络,用于图像识别的机器学习算法或涉及海量数据集的自然语言处理的情况下。因为深度神经网络是通过这些海量数据集的多重关联建立起来的,所以目前很难知道为什么会得出一个特定的结论。企业需要更全面的治理结构,尤其是借助像神经网络这样不具备可追溯性的先进技术。

总而言之,可追溯性使企业能够更好地理解整个推理过程,并通过人工智能的实施建立信任关系,这可以帮助企业、员工和客户更好地接受人工智能。随着人工智能领域的其他方面逐渐成熟,我们希望在其他人工智能技术中也可看到类似的推理路径。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 人工智能
    +关注

    关注

    1791

    文章

    46838

    浏览量

    237496

原文标题:可解释的人工智能路径

文章出处:【微信号:D1Net08,微信公众号:AI人工智能D1net】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    嵌入式和人工智能究竟是什么关系?

    人工智能的结合,无疑是科技发展中的一场革命。在人工智能硬件加速中,嵌入式系统以其独特的优势和重要性,发挥着不可或缺的作用。通过深度学习和神经网络等算法,嵌入式系统能够高效地处理大量数据,从而实现
    发表于 11-14 16:39

    AI for Science:人工智能驱动科学创新》第6章人AI与能源科学读后感

    幸得一好书,特此来分享。感谢平台,感谢作者。受益匪浅。 在阅读《AI for Science:人工智能驱动科学创新》的第6章后,我深刻感受到人工智能在能源科学领域中的巨大潜力和广泛应用。这一章详细
    发表于 10-14 09:27

    AI for Science:人工智能驱动科学创新》第4章-AI与生命科学读后感

    很幸运社区给我一个阅读此书的机会,感谢平台。 《AI for Science:人工智能驱动科学创新》第4章关于AI与生命科学的部分,为我们揭示了人工智能技术在生命科学领域中的广泛应用和
    发表于 10-14 09:21

    AI for Science:人工智能驱动科学创新》第二章AI for Science的技术支撑学习心得

    非常高兴本周末收到一本新书,也非常感谢平台提供阅读机会。 这是一本挺好的书,包装精美,内容详实,干活满满。 关于《AI for Science:人工智能驱动科学创新》第二章“AI
    发表于 10-14 09:16

    AI for Science:人工智能驱动科学创新》第一章人工智能驱动的科学创新学习心得

    人工智能:科学研究的加速器 第一章清晰地阐述了人工智能作为科学研究工具的强大功能。通过机器学习、深度学习等先进技术,AI能够处理和分析海量数据,发现传统方法难以捕捉的模式和规律。这不
    发表于 10-14 09:12

    risc-v在人工智能图像处理应用前景分析

    长时间运行或电池供电的设备尤为重要。 高性能 : 尽管RISC-V架构以低功耗著称,但其高性能也不容忽视。通过优化指令集和处理器设计,RISC-V可以在处理复杂的人工智能图像处理任务时表现出色。 三
    发表于 09-28 11:00

    人工智能ai 数电 模电 模拟集成电路原理 电路分析

    人工智能ai 数电 模电 模拟集成电路原理 电路分析 想问下哪些比较容易学 不过好像都是要学的
    发表于 09-26 15:24

    人工智能ai4s试读申请

    目前人工智能在绘画对话等大模型领域应用广阔,ai4s也是方兴未艾。但是如何有效利用ai4s工具助力科研是个需要研究的课题,本书对ai4s基本原理和原则,方法进行描诉,有利于总结经验,拟
    发表于 09-09 15:36

    名单公布!【书籍评测活动NO.44】AI for Science:人工智能驱动科学创新

    ! 《AI for Science:人工智能驱动科学创新》 这本书便将为读者徐徐展开AI for Science的美丽图景,与大家一起去了解: 人工智能究竟帮科学家做了什么?
    发表于 09-09 13:54

    报名开启!深圳(国际)通用人工智能大会将启幕,国内外大咖齐聚话AI

    8月28日至30日,2024深圳(国际)通用人工智能大会暨深圳(国际)通用人工智能产业博览会将在深圳国际会展中心(宝安)举办。大会以“魅力AI·无限未来”为主题,致力于打造全球通用人工智能
    发表于 08-22 15:00

    FPGA在人工智能中的应用有哪些?

    FPGA(现场可编程门阵列)在人工智能领域的应用非常广泛,主要体现在以下几个方面: 一、深度学习加速 训练和推理过程加速:FPGA可以用来加速深度学习的训练和推理过程。由于其高并行性和
    发表于 07-29 17:05

    Python中的人工智能框架与实例

    人工智能AI)领域,Python因其简洁的语法、丰富的库和强大的社区支持,成为了最受欢迎的编程语言之一。本文将详细介绍Python中的人工智能框架,并通过具体实例展示如何使用这些框架来实现不同
    的头像 发表于 07-15 14:54 1565次阅读

    嵌入式人工智能的就业方向有哪些?

    。 国内外科技巨头纷纷争先入局,在微软、谷歌、苹果、脸书等积极布局人工智能的同时,国内的BAT、华为、小米等科技公司也相继切入到嵌入式人工智能的赛道。那么嵌入式AI可就业的方向有哪些呢? 嵌入式
    发表于 02-26 10:17

    宁畅发布《基于标准PCIe接口的人工智能加速卡液冷设计》白皮书

    宁畅公司最近发布了一份名为《基于标准PCIe接口的人工智能加速卡液冷设计》的技术白皮书,这份白皮书由宁畅参与起草,并由开放计算标准工作委员会(OCTC)归口,旨在为冷板式人工智能加速
    的头像 发表于 01-09 14:02 687次阅读

    身边的人工智能有哪些

    身边的人工智能有哪些  身边的人工智能应用已经渗透到了我们日常生活的方方面面。从智能手机中的语音助手到智能家居设备,人工智能正逐渐改变着我们
    的头像 发表于 12-07 16:32 3347次阅读