0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

“小数据,大任务”范式是人工智能统一的目标

MqC7_CAAI_1981 来源:未知 作者:胡薇 2018-06-12 15:17 次阅读

“日常生活中,人类视觉系统受很多任务所驱动,视觉表达和计算机制等都源自于各种各样的任务。物体和场景的设计都由潜在的功能(Functionality)和物理(Physics)所决定,人类活动由潜在的社交意图(Intents)、因果(Causality)、和价值取向(Utility)所决定。这些潜在的、不可见的FPICU就是一种智能的暗物质“Dark Matter”,这些因素和变量在感知中是看不见的, 却控制着那些看得见的物体和场景的几何和外观特征。”

朱松纯

全球著名计算机视觉专家、统计与应用数学家、人工智能专家。美国洛杉矶加州大学(UCLA)统计系兼计算机系教授,任视觉、认知、学习与自主机器人中心主任。长江学者、千人计划专家、IEEE Fellow。在计算机视觉、统计建模与推理, 认知机器人等方面发表论文260余篇。在美国获得多项国家级与世界级奖励,包括三次获得计算机视觉大会(ICCV)颁发的Marr prize、Helmholtz Test-of-Time Prize,和国际模式识别学会(IAPR)颁发的Aggarwal prize,目前主持多项美国重大研究计划。

7月28日至29日中国人工智能大会(CCAI2018)将于深圳举行,朱松纯教授将在主会场中做题为《智能“暗物质”与“小数据、大任务”范式》的精彩报告,向国内外各界人士分享其关于人工智能范式转换的颠覆性观点。

下面收集整理了朱松纯教授近期的主要观点,让我们跟随朱教授的思想一起走向人工智能的研究前沿。

“读不懂AI的历史,就无法预测未来”

朱松纯教授曾多次强调:要搞清楚人工智能的发展趋势,首先得回顾历史,正本清源。朱教授曾将人工智能发展的60年总结为三个阶段,经过三次兴起的热潮,每次兴盛期都有不同的技术在里面起作用。

第一次热潮是在1956-1974年,以命题逻辑、谓词逻辑等知识的表达、启发式搜索为代表。

第二次热潮是在80年代初期,一些教授专家主要做专家系统、知识工程、医疗诊断等方面的研究,到了80年代末期又出现了一个短暂的神经网络研究热潮。

在此之后人工智能这个词在公众视野中消失了将近30年的时间。当然研究者对于其的探索并没有停止,像朱松纯教授所说的这30年人工智能处于一个“分治时期”,相当于中国历史的“春秋时期”,“分治时期”形成了计算机视觉、自然语言理解、认知科学、机器学习、机器人学这五大学科独立发展,被他称为“春秋五霸”。

第三次热潮是从2012年兴起的深度学习推动的。被称为“春秋五霸”的这五个领域不断的扩展,领域之间出现了融合,类似于中国的“战国时期”,这个时期总结起来一共有“六个领域”, 包括:计算机视觉、自然语言理解与交流、认知与推理、机器人学、博弈与伦理、机器学习。朱松纯教授通过大量的实验数据的研究试图寻找它们之间统一的目标,解决当下人工智能发展各自称雄的局面

“小数据,大任务”范式是人工智能统一的目标

朱松纯教授认为人工智能这一学科涵盖非常广泛,包含的这六大领域正在交叉发展,最终的目标都是希望它们能够形成一个完整的科学体系,成为一门真正的科学(Science of Intelligence)。朱松纯教授提到这六大领域就像是处在“战国时期”的“战国六雄”,是否将其统一起来,它们的研究方向究竟在哪里?这一问题也是朱松纯教授一直以来思考研究的内容。

朱教授认为,基于统计概率模型的大数据分析方法,包括机器学习和深度学习等,可以针对某个特定的任务,例如人脸识别,设计一个简单的价值函数,用大量数据进行训练这一特定的模型,这一模式的应用可称为“大数据、小任务范式”,并不能产生真正意义上的智能。这种方法对某些具体的问题上很有效果,但是这个模型不能适用于更广泛的任务,更不能适用复杂的任务执行,这一思路对于人工智能的发展并不能起到跨越式的前进。朱教授认为,“小数据 大任务”范式是人工智能统一的目标。

朱松纯教授曾在90年代率先将概率统计建模与随机计算方法引入计算机视觉研究,提出了一系列图像与食品的结构化解译框架、数理模型和统计算法,发展了广义模式理论。在认知科学领域,如视觉尝试推理、场景理解及人工智能等领域做出卓越贡献。从“大数据 小任务”到“小数据 大任务”,在CCAI2018的报告中,朱教授将深入阐释他所提出的颠覆性的模式:仅使用少量样本,但可以泛化到多种任务中。报告中会以示例对上述观点进行阐述。

“暗物质”概念极大的拓展了人类对物理世界的认知边界,“智能暗物质”概念的提出,又将为人工智能的研究与应用带来哪些颠覆与变革?让我们一起期待朱松纯教授在2018中国人工智能大会的精彩演讲!

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 人工智能
    +关注

    关注

    1791

    文章

    46838

    浏览量

    237488
  • 机器学习
    +关注

    关注

    66

    文章

    8375

    浏览量

    132397

原文标题:CCAI 2018丨 朱松纯:人工智能范式转换

文章出处:【微信号:CAAI-1981,微信公众号:中国人工智能学会】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    嵌入式和人工智能究竟是什么关系?

    人工智能的结合,无疑是科技发展中的场革命。在人工智能硬件加速中,嵌入式系统以其独特的优势和重要性,发挥着不可或缺的作用。通过深度学习和神经网络等算法,嵌入式系统能够高效地处理大量数据
    发表于 11-14 16:39

    《AI for Science:人工智能驱动科学创新》第6章人AI与能源科学读后感

    幸得好书,特此来分享。感谢平台,感谢作者。受益匪浅。 在阅读《AI for Science:人工智能驱动科学创新》的第6章后,我深刻感受到人工智能在能源科学领域中的巨大潜力和广泛应用。这
    发表于 10-14 09:27

    AI for Science:人工智能驱动科学创新》第4章-AI与生命科学读后感

    阅读这章后,我深感人工智能与生命科学的结合正引领着场前所未有的科学革命,以下是我个人的读后感: 1. 技术革新与生命科学进步 这章详细阐述了
    发表于 10-14 09:21

    《AI for Science:人工智能驱动科学创新》第二章AI for Science的技术支撑学习心得

    非常高兴本周末收到本新书,也非常感谢平台提供阅读机会。 这是本挺好的书,包装精美,内容详实,干活满满。 关于《AI for Science:人工智能驱动科学创新》第二章“AI
    发表于 10-14 09:16

    《AI for Science:人工智能驱动科学创新》第人工智能驱动的科学创新学习心得

    人工智能:科学研究的加速器 第章清晰地阐述了人工智能作为科学研究工具的强大功能。通过机器学习、深度学习等先进技术,AI能够处理和分析海量数据,发现传统方法难以捕捉的模式和规律。这不
    发表于 10-14 09:12

    risc-v在人工智能图像处理应用前景分析

    满足人工智能图像处理中对于高性能、低功耗和特定功能的需求。 低功耗 : 在人工智能图像处理中,低功耗是个重要的考量因素。RISC-V架构的设计使其在处理任务时能够保持较低的功耗水平
    发表于 09-28 11:00

    人工智能ai4s试读申请

    目前人工智能在绘画对话等大模型领域应用广阔,ai4s也是方兴未艾。但是如何有效利用ai4s工具助力科研是个需要研究的课题,本书对ai4s基本原理和原则,方法进行描诉,有利于总结经验,拟按照要求准备相关体会材料。看能否有助于入门和提高ss
    发表于 09-09 15:36

    名单公布!【书籍评测活动NO.44】AI for Science:人工智能驱动科学创新

    ! 《AI for Science:人工智能驱动科学创新》 这本书便将为读者徐徐展开AI for Science的美丽图景,与大家起去了解: 人工智能究竟帮科学家做了什么? 人工智能
    发表于 09-09 13:54

    报名开启!深圳(国际)通用人工智能大会将启幕,国内外大咖齐聚话AI

    呈现、产业展览、技术交流、学术论坛于体的世界级人工智能合作交流平台。本次大会暨博览会由工业和信息化部政府采购中心、广东省工商联、前海合作区管理局、深圳市工信局等单位指导,深圳市人工智能产业协会主办
    发表于 08-22 15:00

    FPGA在人工智能中的应用有哪些?

    FPGA(现场可编程门阵列)在人工智能领域的应用非常广泛,主要体现在以下几个方面: 、深度学习加速 训练和推理过程加速:FPGA可以用来加速深度学习的训练和推理过程。由于其高并行性和低延迟特性
    发表于 07-29 17:05

    5G智能物联网课程之Aidlux下人工智能开发(SC171开发套件V2)

    5G智能物联网课程之Aidlux下人工智能开发(SC171开发套件V2) 课程类别 课程名称 视频课程时长 视频课程链接 课件链接 人工智能 参赛基础知识指引 14分50秒 https
    发表于 05-10 16:46

    5G智能物联网课程之Aidlux下人工智能开发(SC171开发套件V1)

    课程类别 课程名称 视频课程时长 视频课程链接 课件链接 人工智能 参赛基础知识指引 14分50秒 https://t.elecfans.com/v/25508.html *附件:参赛基础知识指引
    发表于 04-01 10:40

    嵌入式人工智能的就业方向有哪些?

    嵌入式人工智能的就业方向有哪些? 在新轮科技革命与产业变革的时代背景下,嵌入式人工智能成为国家新型基础建设与传统产业升级的核心驱动力。同时在此背景驱动下,众多名企也纷纷在嵌入式人工智能
    发表于 02-26 10:17

    生成式人工智能和感知式人工智能的区别

    生成新的内容和信息的人工智能系统。这些系统能够利用已有的数据和知识来生成全新的内容,如图片、音乐、文本等。生成式人工智能通常基于深度学习技术,如生成对抗网络(GANs)、变分自编码器(VAEs)等。 生成式
    的头像 发表于 02-19 16:43 1524次阅读

    推动人工智能安全发展

    近年来,国家高度重视人工智能安全发展,逐步完善相关政策法规。国务院印发《新一代人工智能发展规划》提出面向2030年我国新一代人工智能发展的指导思想、战略目标、重点
    的头像 发表于 01-04 16:32 1112次阅读