0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

石墨烯电极的商用化获突破性进展,韩国解决石墨烯OLED难题

肖青梅 来源:未知 作者:xiaoqingmei 2018-06-14 10:36 次阅读

【导读】:石墨烯以其独特的性能成为如今科技领域的重要材料,但是石墨烯虽好,开发过程中难题也不少。最近,石墨烯电极的商用化获突破性进展,韩国解决石墨烯OLED难题。

韩国首尔大学材料工学院研发出提升最薄导电体-石墨烯性能与稳定性的新型加工方法。此种技术可应用于太阳能电池,柔性电池,透明显示等高科技领域。首尔大学团队研发出在石墨烯添加高分子物质提升其导电率、进一步成功应用于高效率发光OLED的材料。

因六角形蜂窝网状结构碳元素的石墨烯虽可导电,但其导电性能差,只能与其他物质混合使用。之前所使用的混合物质接触空气和水时候易发生变化,因此有稳定性差的缺点。

此次的首尔大学研究所采用的是化学性能稳定的氟化高分子石墨烯材料。此种石墨烯不止导电性极佳,在300度以上的高温下也可以形成稳定性极佳的电极。研究院还表示此次的发现相当于解决了石墨烯OLED商用化的最大难题,可有助于提前石墨烯电极的商用化。

此研发成果已发表在国际学术刊物- “Nature communications”。石墨烯生长提速10倍以上。

韩国UNIST的Rodney Ruoff教授团队5月24日也对外发表了一种利用单结晶铜镍合金箔让石墨烯生长提速10倍以上的新型制作方法。

石墨烯制作的核心工程化学蒸镀(CVD)所采用的是多晶体铜基板为促酶,在促酶铜基板上利用甲醇和氢形成碳原子石墨烯。因铜基板的结晶配位多,所以生长出来的石墨烯为多晶体。但多晶体石墨烯导电率与速度低下,科学家们一直致力于寻求单晶体石墨烯的方案。

现大家所使用的技术是与石墨烯晶格相似的铜(111)单晶为基板的Epitaxy方式,因铜(111)基板的结晶方向一致,晶格结构相似等特征可生长出近乎于单结晶的晶体。

铜镍单结晶合金箔与单结晶石墨烯

但Rodney Ruoff教授团队此次发表的方式是在铜(111)的单结晶箔基础上再添加镍,形成铜镍合金箔作为基板。此时可生成每6个铜原子配1个镊原子的规则性铜-镍初晶格。

研究员表示,按照密度泛函理论(DFT)计算,添加镍元素之后可大幅缩减石墨烯的甲烷分解所需的能量。所以相应的石墨烯生长时间从铜(111)基板时所需的60分钟,可缩减到5分钟。

石墨烯为碳原子组成的同位素,虽厚度仅为0.2奈米,但机械强度为钢铁的200倍,而且有着不易断、柔韧性佳,导电性能比硅优秀100倍等优势。此次研究还在石墨烯单层中发现约40奈米宽的“延伸线(fold)”。延伸线以20奈米的间隔互相平行并垂直存在于金属基板。研究组通过透射电子显微镜,首次观察到未完全形成的石墨烯岛(Grapeneisland)相互结合领域里形成的延伸线。此种现象形成理由为金属与石墨烯的热容变化量不同,在热胀时在金属基板形成的石墨烯并不会跟随金属基板发生冷缩,从而变为褶皱(3层结构)。

UNIST团队

Rodney Ruoff教授表示,此次的研究成功的在铜镍基板和金箔上形成初晶格结构,并首次发现石墨烯迅速生长与3层折叠延伸线。此种成果可应用于2次元材料与薄膜研究。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • OLED
    +关注

    关注

    119

    文章

    6223

    浏览量

    225134
  • 石墨烯
    +关注

    关注

    54

    文章

    1584

    浏览量

    80247
收藏 人收藏

    相关推荐

    一文速览石墨的奥秘

    体系中分别发现了整数量子霍尔效应及常温条件下的量子霍尔效应(2009),而获得2010年度诺贝尔物理学奖。   1   一种未来革命的材料 石墨是碳的同素异形体,碳原子以sp²杂
    的头像 发表于 02-18 14:11 52次阅读
    一文速览<b class='flag-5'>石墨</b><b class='flag-5'>烯</b>的奥秘

    石墨铅蓄电池研究进展、优势、挑战及未来方向

    中的应用 1. 电极材料改性 - 正极(铅氧化物):添加石墨作为导电剂,增强电极导电,减少活性物质脱落,提升反应效率。 - 负极(铅):
    的头像 发表于 02-13 09:36 158次阅读

    氧化石墨制备技术的最新研究进展

    氧化石墨(GO)是一类重要的石墨材料,具有多种不同于石墨的独特性质,是目前应用最为广泛的二
    的头像 发表于 02-09 16:55 134次阅读
    氧化<b class='flag-5'>石墨</b><b class='flag-5'>烯</b>制备技术的最新研究<b class='flag-5'>进展</b>

    石墨的分类

    石墨是一种由碳原子以sp²杂轨道构成的二维纳米材料,具有独特的六角蜂窝状晶格结构。根据不同的分类标准,石墨可以分为多种类型: 按层数分
    的头像 发表于 01-14 14:37 352次阅读

    石墨的基本特性‌,制备方法‌和应用领域

    石墨技术是一种基于石墨这种新型材料的技术,石墨由碳原子以sp²杂
    的头像 发表于 01-14 11:02 274次阅读

    2024年石墨科技的十大进展和应用领域

    2024年石墨科技的十大进展和应用领域 1、石墨在新能源领域的突破:在第十一届中国国际
    的头像 发表于 01-14 10:49 711次阅读
    2024年<b class='flag-5'>石墨</b><b class='flag-5'>烯</b>科技的十大<b class='flag-5'>进展</b>和应用领域

    定向石墨复合防腐涂层的研究进展

      近年来,由于石墨(Gr)制备技术的不断发展[1-2],石墨的生产成本逐渐降低,这使其在有机防腐涂层领域的应用成为了可能。研究人员在石墨
    的头像 发表于 12-17 17:31 519次阅读
    定向<b class='flag-5'>石墨</b><b class='flag-5'>烯</b>复合防腐涂层的研究<b class='flag-5'>进展</b>

    石墨发热油墨为汽车后视镜带来智能电加热保护

    Haydale石墨发热油墨采用了先进的石墨纳米材料,这是一种极为强大的导电材料。通过将石墨
    发表于 11-15 15:55

    石墨和白石墨(氮化硼)的作用区别

    石墨石墨是一种由碳原子以sp²杂轨道组成六角型呈蜂巢晶格的二维碳纳米材料。这种独特的结构赋予了
    的头像 发表于 10-06 08:01 641次阅读
    <b class='flag-5'>石墨</b><b class='flag-5'>烯</b>和白<b class='flag-5'>石墨</b><b class='flag-5'>烯</b>(氮化硼)的作用区别

    什么是石墨和白石墨

    石墨石墨是一种由碳原子以sp²杂轨道组成六角型呈蜂巢晶格的二维碳纳米材料。这种独特的结构赋予了
    的头像 发表于 09-30 08:02 526次阅读
    什么是<b class='flag-5'>石墨</b><b class='flag-5'>烯</b>和白<b class='flag-5'>石墨</b><b class='flag-5'>烯</b>?

    用于印刷电子柔性丝网印刷的高导电石墨油墨

    石墨的特有性能和未来发展前景引起了人们极大的兴趣,但是如何获取无缺陷,低氧化,稳定的石墨片可以沉积在不同基底上是一个国内外共同遇到的技术难题
    的头像 发表于 07-11 09:54 447次阅读

    用于印刷电子柔性丝网印刷的高导电石墨油墨

    石墨的特有性能和未来发展前景引起了人们极大的兴趣,但是如何获取无缺陷,低氧化,稳定的石墨片可以沉积在不同基底上是一个国内外共同遇到的技术难题
    的头像 发表于 07-11 09:24 589次阅读
    用于印刷电子柔性丝网印刷的高导电<b class='flag-5'>石墨</b><b class='flag-5'>烯</b>油墨

    石墨电池的优缺点 锂电池跟石墨电池有什么区别

    石墨电池是一种新型的电池技术,其核心特点是在电极材料中加入了石墨,以提高电池的性能。
    的头像 发表于 04-28 16:40 3438次阅读

    石墨石墨有什么区别

    则是由多层的石墨叠加而成的。2、厚度不同:石墨是单层碳原子,石墨石墨
    的头像 发表于 02-27 18:52 1.1w次阅读
    <b class='flag-5'>石墨</b>和<b class='flag-5'>石墨</b><b class='flag-5'>烯</b>有什么区别

    石墨电容

    。今天,我将为大家推荐一款高性能的石墨电容——4.2V 5500F 2.6Ah石墨电容,它或许将为您的应用带来革命的改变。 一、性能
    发表于 02-21 20:28