0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

人工神经网络是怎么学习的呢?

mK5P_AItists 来源:未知 作者:李倩 2018-06-21 14:44 次阅读

摘要:从算法的角度看,机器学习有很多种算法,例如回归算法、基于实例的算法、正则化算法、决策树算法、贝叶斯算法、聚合算法、关联规则学习算法和人工神经网络算法。

从算法的角度看,机器学习有很多种算法,例如回归算法、基于实例的算法、正则化算法、决策树算法、贝叶斯算法、聚合算法、关联规则学习算法和人工神经网络算法。很多算法可以应用于不同的具体问题;很多具体的问题也需要同时应用好几种不同的算法。由于篇幅有限,我们仅介绍其中(可能是公众心目中名气最大的)一种:人工神经网络。

人工神经网络:

既然人工智能模拟人类的思考过程,一些人工智能科学家想,不如我们先看看人类是怎样思考的吧?

人类的大脑是一个复杂的神经网络。它的组成单元是神经元。每一个神经元看起来很简单,它们先接收上一个神经细胞的电信号刺激,再向下一个神经细胞发出电信号刺激。

别看神经元细胞很简单,但如果神经元的数量很多,它们彼此之间的连接恰到好处,变成神经网络,就可以从简单中演生出复杂的智能来。例如,人类的大脑中含有1千亿个神经元,平均每个神经元跟其他的神经元存在7000个突触连接。一个三岁小孩大脑中,大约会形成1千万亿个突触。随着年龄的增长,人类大脑的突触数量会逐渐减少。成年人的大脑中,大约会有1百万亿到5百万亿个突触。

虽然科学家还没有完全搞清楚人类大脑的神经网络的运作方式,但人工智能科学家想,不理解没关系,先在计算机中模拟一组虚拟的神经网络试试看,这就是人工神经网络。

在人工神经网络中,每一个小圆圈都是在模拟一个“神经元”。它能够接收从上一层神经元传来的输入信号(也就是一堆数字);根据不同神经元在它眼中的重要性,分配不同的权重,然后将输入信号按照各自的权重加起来(一堆数字乘以权重的大小,再求和);接着,它将加起来结果代入某个函数(通常是非线性函数),进行运算,得到最终结果;最后,它再将这个结果输出给神经网络中的下一层神经元。

人工神经网络中的神经元看起来很简单,只知道傻傻地将上一层神经元的输入数据进行简单的运算,然后再傻傻地输出。没想到这一套还真的很管用,运用一系列精巧的算法,再给它投喂大量的数据之后,人工神经网络居然能够像人脑的神经网络一样,从复杂的数据中发现一系列“特征”,产生“聪明的思考结果”。

那么人工神经网络是怎么学习的呢?所谓的学习,本质上是让人工神经网络尝试调节每一个神经元上的权重大小,使得整个人工神经网络在某一个任务的测试中的表现达到某个要求(例如,识别汽车的正确率达到90%以上)。

请回忆一下前面讲过的“梯度下降法”。人工神经网络尝试不同的权重大小,相当于在一个参数空间的地图上四处游走。每一种权重的组合对应的人工神经网络执行任务时的错误率,相当于这个地图上的每一点都有一个海拔高度。寻找一组权重,使得人工神经网络的表现最好,错误率最低,就相当于在地图上寻找海拔最低的地方。所以,人工神经网络的学习过程,常常要用到某种“梯度下降法”,这就是为什么如果将来你要学习人工智能,第一个要掌握的就是“梯度下降法”。

机器学习的分类:

从学习风格的角度看,机器学习有很很多种学习方法,我们简要地列举其中几种方法:监督学习、非监督学习、强化学习和迁移学习。

监督学习:

比方说,你想教计算机如何识别一张照片上的动物是不是猫。你先拿出几十万张动物的照片,凡是有猫的,你就告诉计算机有猫;凡是没有猫的,你就告诉计算机没有猫。也就是说,你预先给计算机要学习的数据进行了分类。这相当于你监督了计算机的学习过程。

经过一段监督学习的过程之后,如果你再给计算机看照片,它就能认出照片中有没有猫。

非监督学习:

比方说,你想教计算机区分猫和狗的照片。你拿出几十万张猫和狗的照片(没有其他动物)。你并不告诉计算机哪些是猫,哪些是狗。也就是说,你没有预先给计算机要学习的数据进行分类,所以你并没有监督计算机的学习过程。

经过一段监督学习的过程之后,计算机就能把你输入的照片按照相似性分成两个大类(也就是区分了猫和狗)。只不过计算机只是从数字照片的数学特征的角度进行了分类,而不是从动物学的角度进行了分类。

强化学习:

比方说,你想教计算机控制一只机械臂打乒乓球。一开始,计算机控制机械臂像傻瓜一样,拿着球拍做很多随机的动作,完全不得要领。

但是,一旦机械臂凑巧接到一个球,并把球击打到对手的球桌上,我们就让计算机得一分,这叫做奖励。一旦机械臂没有正确地接到球、或没有把球击打到正确的位置上,我们就给计算机扣一分,这叫做惩罚。经过大量的训练之后,机械臂渐渐地从奖励和惩罚中,学会了接球、击打球的基本动作。

迁移学习:

比方说,你让计算机学会了控制机械臂打乒乓球之后,又叫它学习打网球。这个时候,你不需要让计算机从零开始重新学,因为乒乓球和网球的规则是相似的。例如,这两种球都要把球击打到对方的球场/球桌上。所以,计算机可以将之前学到的动作迁移过来。这样一种学习,就叫做迁移学习。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 神经网络
    +关注

    关注

    42

    文章

    4763

    浏览量

    100541
  • 算法
    +关注

    关注

    23

    文章

    4600

    浏览量

    92646

原文标题:揭秘:机器究竟是怎么学习的?

文章出处:【微信号:AItists,微信公众号:人工智能学家】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    详解深度学习神经网络与卷积神经网络的应用

    在如今的网络时代,错综复杂的大数据和网络环境,让传统信息处理理论、人工智能与人工神经网络都面临巨大的挑战。近些年,深度学习逐渐走进人们的视线
    的头像 发表于 01-11 10:51 1917次阅读
    详解深度<b class='flag-5'>学习</b>、<b class='flag-5'>神经网络</b>与卷积<b class='flag-5'>神经网络</b>的应用

    人工神经网络原理及下载

    人工神经网络是根据人的认识过程而开发出的一种算法。假如我们现在只有一些输入和相应的输出,而对如何由输入得到输出的机理并不清楚,那么我们可以把输入与输出之间的未知过程看成是一个“网络”,通过不断地给
    发表于 06-19 14:40

    应用人工神经网络模拟污水生物处理

    应用人工神经网络模拟污水生物处理(1.浙江工业大学建筑工程学院, 杭州 310014; 2.镇江水工业公司排水管理处,镇江 212003)摘要:针对复杂的非线性污水生物处理过程,开发了径向基函数的人工
    发表于 08-08 09:56

    基于labview的BP人工神经网络曲线拟合小程序

    `点击学习>>《龙哥手把手教你学LabVIEW视觉设计》视频教程用LabVIEW实现的BP人工神经网络曲线拟合,感谢LabVIEW的矩阵运算函数,程序流程较之文本型语言清晰很多。[hide] [/hide]`
    发表于 12-13 16:41

    神经网络教程(李亚非)

      第1章 概述  1.1 人工神经网络研究与发展  1.2 生物神经元  1.3 人工神经网络的构成  第2章
    发表于 03-20 11:32

    人工神经网络课件

    人工神经网络课件
    发表于 06-19 10:15

    人工神经网络算法的学习方法与应用实例(pdf彩版)

    物体所作出的交互反应,是模拟人工智能的一条重要途径。人工神经网络与人脑相似性主要表现在:①神经网络获取的知识是从外界环境学习得来的;②各
    发表于 10-23 16:16

    【专辑精选】人工智能之神经网络教程与资料

    电子发烧友总结了以“神经网络”为主题的精选干货,今后每天一个主题为一期,希望对各位有所帮助!(点击标题即可进入页面下载相关资料)人工神经网络算法的学习方法与应用实例(pdf彩版)卷积
    发表于 05-07 19:18

    人工神经网络实现方法有哪些?

    人工神经网络(Artificial Neural Network,ANN)是一种类似生物神经网络的信息处理结构,它的提出是为了解决一些非线性,非平稳,复杂的实际问题。那有哪些办法能实现人工
    发表于 08-01 08:06

    【AI学习】第3篇--人工神经网络

    `本篇主要介绍:人工神经网络的起源、简单神经网络模型、更多神经网络模型、机器学习的步骤:训练与预测、训练的两阶段:正向推演与反向传播、以Te
    发表于 11-05 17:48

    怎么解决人工神经网络并行数据处理的问题

    本文提出了一个基于FPGA 的信息处理的实例:一个简单的人工神经网络应用Verilog 语言描述,该数据流采用模块化的程序设计,并考虑了模块间数据传输信号同 步的问题,有效地解决了人工神经网络
    发表于 05-06 07:22

    卷积神经网络简介:什么是机器学习

    抽象人工智能 (AI) 的世界正在迅速发展,人工智能越来越多地支持以前无法实现或非常难以实现的应用程序。本系列文章解释了卷积神经网络 (CNN) 及其在 AI 系统中机器学习中的重要性
    发表于 02-23 20:11

    人工神经网络,人工神经网络是什么意思

    人工神经网络,人工神经网络是什么意思 神经网络是一门活跃的边缘性交叉学科.研究它的发展过程和前沿问题,具有重要的理论意义
    发表于 03-06 13:39 3401次阅读

    神经网络神经网络控制的学习课件免费下载

    本文档的主要内容详细介绍的是神经网络神经网络控制的学习课件免费下载包括了:1生物神经元模型,2人工神经
    发表于 01-20 11:20 7次下载
    <b class='flag-5'>神经网络</b>与<b class='flag-5'>神经网络</b>控制的<b class='flag-5'>学习</b>课件免费下载

    人工神经网络和bp神经网络的区别

    人工神经网络和bp神经网络的区别  人工神经网络(Artificial Neural Network, ANN)是一种模仿人脑
    的头像 发表于 08-22 16:45 4289次阅读