0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

计算机异构时代正在到来 摩尔定律接近极限

h1654155971.7596 来源:未知 作者:胡薇 2018-06-27 09:19 次阅读

异构时代正在到来

我们知道,此前在半导体产业,一般的芯片公司都只专注于少数几种种芯片,但近年来,芯片公司除了之前的纵向发展提升速度外,也越来越注重横向发展,开始整合各种不同类型的芯片。

前不久,英伟达发布了其机器人平台——Jetson Xavier,我们可以看到,这个平台包含了6种处理器:1个Volta TensorCore GPU、1个8核ARM64 CPU、2个NVDLA深度学习加速器、1个图像处理器、1个视觉处理器和1个视频处理器。

我们再来看之前英特尔AI大会,其AI平台也包括一票不同的处理核心,包括:CPU、GPU、DSP、NNP、FPGA等。

手机SoC也是功能不断的丰富,在传统的CPU、GPU、ISP、基带芯片之外,现在越来越多的厂商还会加入另外的加速DSP、用来加速AI的NPU等处理核心。

随着应用越来越多样化,这种通过多种芯片进行异构计算已经成为行业的主流,目前看来这种趋势可能会继续加速。

摩尔定律越来越接近物理极限

摩尔定律是由英特尔(Intel)创始人之一戈登·摩尔(Gordon Moore)提出来的。其内容为:当价格不变时,集成电路上可容纳的元器件的数目,约每隔18-24个月便会增加一倍,性能也将提升一倍。换言之,每一美元所能买到的电脑性能,将每隔18-24个月翻一倍以上。

这一定律到今天为止,基本上准确预测了半导体行业的发展节奏。此前摩尔定律几乎每年都会推动微处理器的性能提升50%,而半导体的物理学限制却让其放慢了脚步。如今,CPU的性能每年只能提升10%左右。英伟达CEO黄仁勋在每年的GTC上都会提到同一件事——摩尔定律失灵了。

现在最先进的处理器为10nm制程,目前垄断半导体光刻市场的ASML 将光刻机的技术蓝图推至 2030 年 1.5 纳米,给了摩尔定律10年左右的寿命,谁也不知道最后的极限到底是多少,但是维持摩尔定律越来越难一家是业界共识。

在这样的情况下,单纯的提升一种芯片性能变的代价越来越高,我们可以看到,目前可以支持高端芯片研发的企业已经越来越少,因为芯片的研发成本已经超过了一般商业公司的承受能力。

当单一芯片发展遇到瓶颈时,横向的发展就变得更加重要,拓展多种芯片可以将自己的市场快速扩大,现在已经成为芯片厂商的主流发展方向。

单一芯片应对不同形式计算力不从心

在移动和云时代到来之前,大家对计算的需求主要集中在运行顺序执行的桌面应用程序,而娱乐需求,催生了专门用于3D计算的显卡。

那时的计算设备更多的放在固定的地方,没有太多的移动需求,因为连接着电网,其对功耗的控制也没有太多的需求。但是移动和云时代的到来改变了这种情况。

移动设备需要处理各种各样的信息,包括通讯、执行程序、处理图片、娱乐游戏、处理各种传感器的信息等等。传统依靠类似CPU这样通用处理器来处理这些信息的效率非常低。

一个是时间上效率低,CPU这种为顺序计算而设计的处理器,一旦被占用,其他处理请求就只能等待。这样任务一多,很多请求就得不到及时处理。另外一个是能源使用上效率低,为了应对各种不同的情况,CPU的功耗会比专门处理相应数据的处理器更高,这也是为什么 iPhone在5S引入了协处理器来处理陀螺仪等传感器的数据,来为设备省电。

高通SoC构架

于是一开始就精通SoC技术的高通,在移动市场到来时便如鱼得水。高通一直以集成度高著称。高通的SoC里面包括了各种各样的处理单元:包括加速3D的GPU,处理照片的ISP,处理通信的基带芯片,处理音频的编解码器,加速向量计算的DSP等。

在移动平台上,各种芯片各司其中,大大提升了手机等移动设备各项功能的响应速度,同时其功耗也可以得到保证,毕竟依靠电池的移动设备对用电非常敏感。

而到数据中心这一端,处理海量数据成为数据中心的主要工作,而传统的处理器并行计算能力受限,超级计算机常常要并联上万颗处理器。特别是AI计算越来越受重视后,CPU并行能力差的弱点更加暴露无疑。

而这个时候,更适合并行计算的GPU就成了很好的选择,2008年前后,通过GPU构造的超级电脑越来越多,而2013年之后来爆发的AI计算热潮,更将GPU应用推向了高潮。于此同时,像FPGA这样的产品,也被发现可以很好的加速于AI算法,成为数据中心的常客。

相对于个人,数据中心也十分在意能耗,电费开支是数据中心的一个大项开支出。所以利用特别的硬件加速算法,节省用电,也是数据中心的追求,这和移动的的需求类似。所以在云端,越来越多不同种类的芯片也开始被应用。

资本为纽带,大整合时代到来

正是由于计算需求的多样化,不同的应用需要不同的芯片来支持,也使得芯片厂商不得不进行横向扩展。

我们看到,近几年,高通32亿美元收购了Atheros,25亿美元收购了英国芯片厂商CSR公司,还开出380亿美元来收购MCU龙头老大恩智浦。另外还有很多小型的公司也陆续被高通收购。虽然收购恩智浦这个巨型收购还没被批准,还有博通意图收购高通的惊天合并案被美国政府否决,但是芯片行业的大整合从这些收购案中便可见一斑。其实相比以业务拓展为目的来不断收购的高通,博通才是近年来通过资本杠杆不断并购公司,并且将市值推高的资本高手。

再来看英特尔,简直就是买买买的典范。153亿美元收购自动驾驶公司Mobile Eye;130亿美元收购Altera;4.08亿美元收购人工智能(AI)创业公司Nervana Systems,还有做视觉处理器的Movidius,英特尔已经将各种人工智能芯片全部买齐。

而国内这边,以紫光为代表的财团,也开始大力整合,紫光集团在2013年-2015年收购了展讯、锐迪科、新华三。并拟38亿美元投资硬盘龙头西部数据成为为大股东、并通过西部数据190亿美元收购存储芯片商Sandisk。2016年,紫光集团通过二级市场低调收购FPGA芯片企业莱迪斯6.07%股权。也大有买遍天下的气势。

从资本角度看,由于摩尔定律基本失效,低于28nm的工艺已经无法降低成本,必须通过企业的整合来扩大规模来获得规模优势,才能在市场竞争中获得成本优势,否则就会被市场淘汰。所以,近年来芯片行业并购异常激烈,并购规模屡创新高,并且没有看到有停歇的意思。

在技术和商业的双重因素推动,将半导体行业真正带入了寡头垄断阶段。无数创业公司竞相斗艳的时代日渐远去,大概只有在AI等新兴领域还有吉光片羽。

从整个行业的资本涌动来看,大多数的芯片企业都已经抛弃了之前偏居一隅细心经营自己的一亩三分地的做法而开始大肆整合,之后全面出击,不同领域之间的竞争也越来越激烈。我们看到,高通和英特尔在笔记本和基带上已经开打,英伟达和英特尔在数据中心开打,但这种冲突可能才刚刚开始,真正的大戏可能还在后头。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • cpu
    cpu
    +关注

    关注

    68

    文章

    10856

    浏览量

    211627
  • 摩尔定律
    +关注

    关注

    4

    文章

    634

    浏览量

    79006

原文标题:异构计算成主流,芯片大整合时代到来

文章出处:【微信号:Anxin-360ic,微信公众号:芯师爷】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    击碎摩尔定律!英伟达和AMD将一年一款新品,均提及HBM和先进封装

    电子发烧友网报道(文/吴子鹏)摩尔定律是由英特尔创始人之一戈登·摩尔提出的经验规律,描述了集成电路上的晶体管数量和性能随时间的增长趋势。根据摩尔定律,集成电路上可容纳的晶体管数目约每隔18个月便会
    的头像 发表于 06-04 00:06 4046次阅读
    击碎<b class='flag-5'>摩尔定律</b>!英伟达和AMD将一年一款新品,均提及HBM和先进封装

    摩尔定律时代,提升集成芯片系统化能力的有效途径有哪些?

    电子发烧友网报道(文/吴子鹏)当前,终端市场需求呈现多元化、智能化的发展趋势,芯片制造则已经进入后摩尔定律时代,这就导致先进的工艺制程虽仍然是芯片性能提升的重要手段,但效果已经不如从前,先进封装
    的头像 发表于 12-03 00:13 2265次阅读

    量子计算机与普通计算机工作原理的区别

      本文介绍了量子计算机与普通计算机工作原理的区别。 量子计算是一个新兴的研究领域,科学家们利用量子力学,制造出具有革命性能力的计算机。虽然现在的量子
    的头像 发表于 11-24 11:00 285次阅读
    量子<b class='flag-5'>计算机</b>与普通<b class='flag-5'>计算机</b>工作原理的区别

    高算力AI芯片主张“超越摩尔”,Chiplet与先进封装技术迎百家争鸣时代

    电子发烧友网报道(文/吴子鹏)英特尔CEO基辛格此前表示,摩尔定律并没有失效,只是变慢了,节奏周期正在放缓至三年。当然,摩尔定律不仅是周期从18个月变为了3年,且开发先进制程成本高昂,经济效益也变得
    的头像 发表于 09-04 01:16 3264次阅读
    高算力AI芯片主张“超越<b class='flag-5'>摩尔</b>”,Chiplet与先进封装技术迎百家争鸣<b class='flag-5'>时代</b>

    “自我实现的预言”摩尔定律,如何继续引领创新

    59年前,1965年4月19日,英特尔公司联合创始人戈登·摩尔(Gordon Moore)应邀在《电子》杂志上发表了一篇四页短文,提出了我们今天熟知的摩尔定律(Moore’s Law)。 就像你为
    的头像 发表于 07-05 15:02 270次阅读

    工业计算机与普通计算机的区别

    在信息化和自动化日益发展的今天,计算机已经成为了我们日常生活和工作中不可或缺的工具。然而,在计算机领域中,工业计算机和普通计算机虽然都具备基本的计算
    的头像 发表于 06-06 16:45 1372次阅读

    封装技术会成为摩尔定律的未来吗?

    你可听说过摩尔定律?在半导体这一领域,摩尔定律几乎成了预测未来的神话。这条定律,最早是由英特尔联合创始人戈登·摩尔于1965年提出,简单地说就是这样的:集成电路上可容纳的晶体管数量大约
    的头像 发表于 04-19 13:55 333次阅读
    封装技术会成为<b class='flag-5'>摩尔定律</b>的未来吗?

    【量子计算机重构未来 | 阅读体验】+ 初识量子计算机

    : 现在到哪里可以买到量子计算机? 1、购买实物的量子计算机: Rigetti和D-Wave公司,当前价格非常昂贵。 2、购买量子计算机云服务:IBM、Google、Amazon、Mi
    发表于 03-05 17:37

    功能密度定律是否能替代摩尔定律摩尔定律和功能密度定律比较

    众所周知,随着IC工艺的特征尺寸向5nm、3nm迈进,摩尔定律已经要走到尽头了,那么,有什么定律能接替摩尔定律呢?
    的头像 发表于 02-21 09:46 727次阅读
    功能密度<b class='flag-5'>定律</b>是否能替代<b class='flag-5'>摩尔定律</b>?<b class='flag-5'>摩尔定律</b>和功能密度<b class='flag-5'>定律</b>比较

    摩尔定律的终结:芯片产业的下一个胜者法则是什么?

    在动态的半导体技术领域,围绕摩尔定律的持续讨论经历了显着的演变,其中最突出的是 MonolithIC 3D 首席执行官Zvi Or-Bach于2014 年的主张。
    的头像 发表于 01-25 14:45 1130次阅读
    <b class='flag-5'>摩尔定律</b>的终结:芯片产业的下一个胜者法则是什么?

    计算机系统如何应对大模型时代的挑战与机遇

    “操作系统管理着计算机的资源和进程,以及所有的硬件和软件。计算机的操作系统让用户在不需要了解计算机语言的情况下与计算机进行交互。”这是我们对计算机
    发表于 01-23 11:06 545次阅读
    <b class='flag-5'>计算机</b>系统如何应对大模型<b class='flag-5'>时代</b>的挑战与机遇

    墨芯人工智能CEO王维:需要重新定义和设计AI计算机

    AI时代,我们需要重新定义和设计AI计算机。仅依靠硅基的摩尔定律,2年翻一倍的线性增长的算力供给远不能满足指数级增长的需求问题。
    的头像 发表于 01-12 11:12 1083次阅读

    中国团队公开“Big Chip”架构能终结摩尔定律

    摩尔定律的终结——真正的摩尔定律,即晶体管随着工艺的每次缩小而变得更便宜、更快——正在让芯片制造商疯狂。
    的头像 发表于 01-09 10:16 832次阅读
    中国团队公开“Big Chip”架构能终结<b class='flag-5'>摩尔定律</b>?

    英特尔CEO基辛格:摩尔定律放缓,仍能制造万亿晶体

    帕特·基辛格进一步预测,尽管摩尔定律显著放缓,到2030年英特尔依然可以生产出包含1万亿个晶体管的芯片。这将主要依靠新 RibbonFET晶体管、PowerVIA电源传输、下一代工艺节点以及3D芯片堆叠等技术实现。目前单个封装的最大芯片含有约1000亿个晶体管。
    的头像 发表于 12-26 15:07 671次阅读

    英特尔CEO基辛格:摩尔定律仍具生命力,且仍在推动创新

    摩尔定律概念最早由英特尔联合创始人戈登·摩尔在1970年提出,明确指出芯片晶体管数量每两年翻一番。得益于新节点密度提升及大规模生产芯片的能力。
    的头像 发表于 12-25 14:54 618次阅读