0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

汇总几种开源的深度学习模型以及针对姿态估计的代码

zhKF_jqr_AI 来源:未知 作者:李倩 2018-07-02 14:44 次阅读

姿态估计的目标是在RGB图像或视频中描绘出人体的形状,这是一种多方面任务,其中包含了目标检测、姿态估计、分割等等。

有些需要在非水平表面进行定位的应用可能也会用到姿态估计,例如图形、增强现实或者人机交互。姿态估计同样包含许多基于3D物体的辨认。

在这篇文章中,Model Zoo的作者汇总了几种开源的深度学习模型以及针对姿态估计的代码,论智对其进行了编译,如有遗漏请在评论中补充。

DensePose

创作这篇文章的初衷就来源于Facebook研究所的DensePose,上周,Facebook公布了这一框架的代码、模型和数据集,同时发布了DensePose-COCO,这是一个为了估计人类姿态的大型真实数据集,其中包括了对5万张COCO图像手动标注的由图像到表面的对应。这对深度学习研究者来说是非常详细的资源,它对姿态估计、身体部位分割等任务提供了良好的数据源。

DensePose的论文中提出了DensePose-RCNN,这是Mask-RCNN的一种变体,可以以每秒多帧的速度在每个人体区域内密集地回归特定部位的UV坐标。它基于一种能将图像像素通过卷积网络映射到密集网格的系统——DenseReg。模型的目标是决定每个像素在表面的位置以及它所在部分相对应的2D参数

DensePose借用了Mask-RCNN的架构,同时带有Feature Pyramid Network(FPN)的特征,以及ROI-Align池化。除此之外,他们在ROI池化的顶层搭建了一个全卷积网络。想了解DensePose更多的技术细节,请阅读原论文。

论文地址:https://arxiv.org/abs/1802.00434

GitHub地址:https://github.com/facebookresearch/Densepose

数据集地址:https://github.com/facebookresearch/DensePose/blob/master/INSTALL.md#fetch-densepose-data

OpenPose

OpenPose是由卡内基梅隆大学认知计算研究室提出的一种对多人身体、面部和手部形态进行实时估计的框架。

OpenPose同时提供2D和3D的多人关键点检测,同时还有针对估计具体区域参数的校准工具箱。OpenPose可接受的输入有很多种,可以是图片、视频、网络摄像头等。同样,它的输出也是多种多样,可以是PNG、JPG、AVI,也可以是JSON、XML和YML。输入和输出的参数同样可以针对不同需要进行调整。

OpenPose提供C++API,以及可以在CPUGPU上工作(包括可与AMD显卡兼容的版本)。

GitHub地址:https://github.com/CMU-Perceptual-Computing-Lab/openpose

数据集地址:http://domedb.perception.cs.cmu.edu/

Realtime Multi-Person Pose Estimation

这一模型和上面的OpenPose高度相关,同时特征模型能与多种框架相关联。论文的作者提供了一种自下而上的方法,对多人的姿态进行实时估计,不需要用任何人物探测器

这种方法运用了一种非参数表示,我们称为Part Affinity Fields(PAFs),用它可以学习将图中人物和其身体部位联系到一起。有关该技术的具体细节和理论,可以阅读原文。

另外,这一方法最棒的特征之一就是它可以在多种不同的框架中实现,针对不同框架,已经公开了相关代码和模型:

OpenPose C++:https://github.com/CMU-Perceptual-Computing-Lab/openpose

TensorFlow:https://github.com/ZheC/RealtimeMulti-PersonPose_Estimation

Keras(1):https://modelzoo.co/model/keras-realtime-multi-person-pose-estimation

Keras(2):https://github.com/michalfaber/kerasRealtimeMulti-PersonPoseEstimation

PyTorch(1):https://github.com/tensorboy/pytorchRealtimeMulti-PersonPoseEstimation

PyTorch(2):https://github.com/DavexPro/pytorch-pose-estimation

PyTorch(3):https://github.com/MVIG-SJTU/AlphaPose/tree/pytorch

MXNet:https://github.com/dragonfly90/mxnetRealtimeMulti-PersonPoseEstimation

论文地址:https://arxiv.org/abs/1611.08050

GitHub地址:https://github.com/ZheC/RealtimeMulti-PersonPose_Estimation

AlphaPose

AlphaPose是一款精准的多人姿态评估工具,并声称是第一款开源系统。AlphaPose既可以在图片、视频或多图中进行姿态估计,也能在画面中对动作进行追踪。它的输出形式非常广泛,包括PNG、JPG和AVI等具有关键点的图片形式,也有JSON格式的输出,这一特点也使其成为众多应用受欢迎的工具。

目前,这一工具支持TensorFlow和PyTorch两种实现。AlphaPose利用一种区域性的多人动作估计框架将不精准的人类边界框该进程精确的动作估计。这里有三种元素:对称空间转换网络(SSTN)、参数化姿态非极大抑制(NMS)以及姿态导向的生成器(PGPG)。更多技术细节请查看原论文。

论文地址:https://arxiv.org/abs/1612.00137

GitHub地址:https://github.com/MVIG-SJTU/AlphaPose

Human Body Pose Estimation

该模型利用MPII人类姿势数据集进行训练,这是一个内容十分丰富的数据集,专门针对人类姿态估计。目前只有TensorFlow的实现。

这项研究将人类姿态估计的任务应用到真实的图片中,他们的方法既解决了动作识别,也能进行估计,与之前先检测人类动作在对此进行推测的技术有所区分。在实施过程中用到了基于CNN的探测器和整数线性规划法。

ArtTracker论文:https://arxiv.org/abs/1612.01465

DeeperCut论文:https://arxiv.org/abs/1605.03170

网站地址:http://pose.mpi-inf.mpg.de/

GitHub地址:https://github.com/eldar/pose-tensorflow

DeepPose

相比于前面几种方法来说,DeepPose算是比较“古老”的了,论文发布与2014年,提出了一种基于深度神经网络的姿态估计方法,是基于DNN向身体关节回归的问题。它以一种整体的方式估计姿态,并且表述起来非常简洁强大。

目前网上还没有官方实现过程。但是有人做出了复现结果:

Chainer:https://github.com/mitmul/deeppose

TensorFlow:https://github.com/asanakoy/deeppose_tf

DeepPose是第一个将深度学习应用到人类姿态估计上的应用,并且取得了当时顶尖的结果,成为了其他方法的baseline。

论文地址:https://static.googleusercontent.com/media/research.google.com/zh-CN//pubs/archive/42237.pdf

小结

姿态估计是计算机视觉领域一个非常热门的话题,Facebook最近发布的DensePose让人越来越多地关注这个问题。进行姿态估计有很多方法,现有的资源一定可以对你有所启发。如果你有其他的好方法,请在下面留言分享!

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 代码
    +关注

    关注

    30

    文章

    4788

    浏览量

    68625
  • 数据集
    +关注

    关注

    4

    文章

    1208

    浏览量

    24703
  • 深度学习
    +关注

    关注

    73

    文章

    5503

    浏览量

    121174

原文标题:六种人体姿态估计的深度学习模型和代码总结

文章出处:【微信号:jqr_AI,微信公众号:论智】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    基于PoseDiffusion相机姿态估计方法

    介绍 一般意义上,相机姿态估计通常依赖于如手工的特征检测匹配、RANSAC和束调整(BA)。在本文中,作者提出了PoseDiffusion,这是一种新颖的相机姿态估计方法,它将
    的头像 发表于 07-23 15:22 1393次阅读
    基于PoseDiffusion相机<b class='flag-5'>姿态</b><b class='flag-5'>估计</b>方法

    【爱芯派 Pro 开发板试用体验】人体姿态估计模型部署前期准备

    除了Openpose外,笔者还有一个选型,就是谷歌的轻量级人体姿态估计模型MoveNet。它是更近的一个轻量级人体姿态估计
    发表于 01-01 01:04

    深度学习模型是如何创建的?

    具有深度学习模型的嵌入式系统应用程序带来了巨大的好处。深度学习嵌入式系统已经改变了各个行业的企业和组织。
    发表于 10-27 06:34

    微软、中科大开源基于深度高分辨表示学习姿态估计算法

    作者在官网指出,深度高分辨率网络不仅对姿态估计有效,也可以应用到计算机视觉的其他任务,诸如语义分割、人脸对齐、目标检测、图像分类中,期待更多具有说服力的结果公布。
    的头像 发表于 03-05 09:55 2842次阅读
    微软、中科大<b class='flag-5'>开源</b>基于<b class='flag-5'>深度</b>高分辨表示<b class='flag-5'>学习</b>的<b class='flag-5'>姿态</b><b class='flag-5'>估计</b>算法

    基于多孔卷积神经网络的图像深度估计模型

    针对在传统机器学习方法下单幅图像深度估计效果差、深度值获取不准确的问题,提出了一种基于多孔卷积神经网络(ACNN)的
    发表于 09-29 16:20 5次下载
    基于多孔卷积神经网络的图像<b class='flag-5'>深度</b><b class='flag-5'>估计</b><b class='flag-5'>模型</b>

    基于深度学习的二维人体姿态估计方法

    基于深度学习的二维人体姿态估计方法通过构建特定的神经网络架构,将提取的特征信息根据相应的特征融合方法进行信息关联处理,最终获得人体姿态
    发表于 03-22 15:51 5次下载
    基于<b class='flag-5'>深度</b><b class='flag-5'>学习</b>的二维人体<b class='flag-5'>姿态</b><b class='flag-5'>估计</b>方法

    收藏!姿态估计开源项目汇总资料下载

    电子发烧友网为你提供收藏!姿态估计开源项目汇总资料下载的电子资料下载,更有其他相关的电路图、源代码、课件教程、中文资料、英文资料、参考设计、
    发表于 04-21 08:43 8次下载
    收藏!<b class='flag-5'>姿态</b><b class='flag-5'>估计</b><b class='flag-5'>开源</b>项目<b class='flag-5'>汇总</b>资料下载

    基于深度学习的二维人体姿态估计算法

    ,更能充分地提取图像信息,获取更具有鲁棒性的特征,因此基于深度学习的方法已成为二维人体姿态估计算法研究的主流方向。然而,深度
    发表于 04-27 16:16 7次下载
    基于<b class='flag-5'>深度</b><b class='flag-5'>学习</b>的二维人体<b class='flag-5'>姿态</b><b class='flag-5'>估计</b>算法

    深度分析RNN的模型结构,优缺点以及RNN模型几种应用

    神经网络是深度学习的载体,而神经网络模型中,最经典非RNN模型所属,尽管它不完美,但它具有学习历史信息的能力。后面不管是encode-dec
    的头像 发表于 05-13 10:47 2.4w次阅读
    <b class='flag-5'>深度</b>分析RNN的<b class='flag-5'>模型</b>结构,优缺点<b class='flag-5'>以及</b>RNN<b class='flag-5'>模型</b>的<b class='flag-5'>几种</b>应用

    结合基扩展模型深度学习的信道估计方法

    结合基扩展模型深度学习的信道估计方法
    发表于 06-30 10:43 62次下载

    用NVIDIA迁移学习工具箱如何训练二维姿态估计模型

      本系列的第一篇文章介绍了在 NVIDIA 迁移学习工具箱中使用开源 COCO 数据集和 BodyPoseNet 应用程序的 如何训练二维姿态估计
    的头像 发表于 04-10 09:41 1757次阅读
    用NVIDIA迁移<b class='flag-5'>学习</b>工具箱如何训练二维<b class='flag-5'>姿态</b><b class='flag-5'>估计</b><b class='flag-5'>模型</b>

    基于OnePose的无CAD模型的物体姿态估计

    基于CAD模型的物体姿态估计:目前最先进的物体6DoF姿态估计方法可以大致分为回归和关键点技术。第一类方法直接将姿势参数与每个感兴趣区域(R
    的头像 发表于 08-10 11:42 1560次阅读

    硬件加速人体姿态估计开源分享

    电子发烧友网站提供《硬件加速人体姿态估计开源分享.zip》资料免费下载
    发表于 06-25 10:27 0次下载
    硬件加速人体<b class='flag-5'>姿态</b><b class='flag-5'>估计</b><b class='flag-5'>开源</b>分享

    AI深度相机-人体姿态估计应用

    我们非常高兴地发布一个新的代码示例,展示虹科AI深度相机SDK的惊人功能。只需6行源代码,您就可以实时准确地估计和跟踪人体姿态!我们最新的
    的头像 发表于 07-31 17:42 1016次阅读
    AI<b class='flag-5'>深度</b>相机-人体<b class='flag-5'>姿态</b><b class='flag-5'>估计</b>应用

    使用爱芯派Pro开发板部署人体姿态估计模型

    部署模型的整体架构。接下来就回到最开始定的主线上了——人体姿态估计。这篇文章就是记录对一些轻量化人体姿态估计
    的头像 发表于 01-09 09:50 1433次阅读
    使用爱芯派Pro开发板部署人体<b class='flag-5'>姿态</b><b class='flag-5'>估计</b><b class='flag-5'>模型</b>