0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

人工智能领域应去“虚火” AI也要“终身学习”

MqC7_CAAI_1981 来源:未知 作者:胡薇 2018-07-02 15:12 次阅读

智能家居智能汽车到机器人保姆、能下围棋的AlphaGo,国内的人工智能越来越热。面对这波热潮,伊利诺伊大学芝加哥分校的杰出教授刘兵表示,去“虚火”、“终身学习”才能让人工智能走得更远。

刘兵

伊利诺伊大学芝加哥分校的杰出教授,ACM,AAAI和IEEE会士,在爱丁堡大学获博士学位。研究兴趣包括情感分析,终身学习,数据挖掘,机器学习和自然语言处理。

在顶级会议和期刊发表了大量的论文。其中两篇论文获得了KDD 10年 Test-of-Time奖。是4本书的作者,其中2本关于情感分析,1本关于终身学习,1本关于数据挖掘。

曾任2013-2017年ACM SIGKDD的主席,也是很多顶级数据挖掘会议的程序主席,包括KDD,ICDM,CIKM,WSDM,SDM和PAKDD。他同时也是顶级期刊的副编辑,包括TKDE, TWEB, DMKD和TKDD。他还是很多自然语言处理,人工智能,网络和数据挖掘会议的领域主席或者高级程序委员会成员。

国内人工智能领域应去“虚火”

人工智能是新一轮科技革命和产业变革的核心驱动力之一,人类的生活正被逐步改变。刘兵教授认为,目前的机器学习仍有攻坚战要打,不应盲目乐观从而揠苗助长。

人工智能有计算智能、感知智能与认知智能3个层次。目前AI取得了一些显著进展,但是主要还是在感知智能层面,比如人脸识别、语音识别、智能驾驶,还有AlphaGo,深度神经网络模型在其中发挥了关键作用。但是,更重要的认知智能又主要集中体现在语言智能即自然语言处理上,也就是说,只有通过自然语言理解,才能实现智能与人类的无缝对接,实现真正意义上的人工智能,自然语言理解可谓是“人工智能这座高峰上的一颗明珠”,而目前还有很多研究工作要做。

“自然语言是不精确的,字面背后还有太多意思,这也是为什么自然语言处理如此困难的原因。”刘兵说,自然语言处理若想突破,需要做出范式上的改变。

人工智能也要“终身学习”

刘兵教授指出了人工智能目前发展的短板问题:“机器还没有达到智能化,机器学习目前需要的数据量非常大。反观一个人,即使没有上过学,他还是有智能,但机器就不同。人类不提供可学习的数据,它们就不可能学习。”

在自然语言理解中,传统的机器学习方法是在封闭的环境中进行单一的隔离任务的学习,它通常需要大量的标注好的训练数据才能进行有效的学习。然而,这种学习方法只适合有限的,有完整定义的任务。在大量的实际场景中,这种隔离的学习范式并不奏效。比如不可能预训练聊天机器人,自动驾驶汽车或者其它任何人工智能体,使得它们能无缝的工作在真实世界的开放环境中。这是因为很难或者不可能永远让人类提供那些包含所有智能体能遇到的场景的知识或者标注数据。智能体因此必须在与环境的持续互动中保留学会的知识,并且使用这些知识使得将来的学习变得更好。

当遇到陌生的环境,智能体必须能够利用已有的知识来处理陌生环境并进一步学习。这种泛化的学习能力是人类智能特有的。没有这种能力,一个智能体恐怕很难称的上真正的智能。近些年,出现了一些新兴的以终身学习,连续学习,元学习或者永无止境学习命名的研究趋势,正在试图给予智能体这种能力。

2018年7月28-29日中国人工智能大会将于深圳召开,届时刘兵教授将带来《终身学习,连续学习和元学习》的主题演讲,将为我们分享人工智能泛化学习能力的最新研究进展,探讨智能体发展的必然趋势。

CCAI2018,与您一起见证时代的发展、智慧的变迁!

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 人工智能
    +关注

    关注

    1791

    文章

    47259

    浏览量

    238427
  • 自然语言
    +关注

    关注

    1

    文章

    288

    浏览量

    13348

原文标题:CCAI2018 | 刘兵:人工智能也要“活到老,学到老”

文章出处:【微信号:CAAI-1981,微信公众号:中国人工智能学会】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    嵌入式和人工智能究竟是什么关系?

    领域,如工业控制、智能家居、医疗设备等。 人工智能是计算机科学的一个分支,它研究如何使计算机具备像人类一样思考、学习、推理和决策的能力。人工智能
    发表于 11-14 16:39

    RISC-V在AI领域的发展前景怎么样?

    随着人工智能的不断发展,现在的视觉机器人,无人驾驶等智能产品的不断更新迭代,发现ARM占用很大的市场份额,推出的ARM Cortex M85性能也是杠杠的,不知道RISC-V在AI领域
    发表于 10-25 19:13

    AI for Science:人工智能驱动科学创新》第6章人AI与能源科学读后感

    幸得一好书,特此来分享。感谢平台,感谢作者。受益匪浅。 在阅读《AI for Science:人工智能驱动科学创新》的第6章后,我深刻感受到人工智能在能源科学领域中的巨大潜力和广泛应
    发表于 10-14 09:27

    AI for Science:人工智能驱动科学创新》第4章-AI与生命科学读后感

    很幸运社区给我一个阅读此书的机会,感谢平台。 《AI for Science:人工智能驱动科学创新》第4章关于AI与生命科学的部分,为我们揭示了人工智能技术在生命科学
    发表于 10-14 09:21

    AI for Science:人工智能驱动科学创新》第二章AI for Science的技术支撑学习心得

    人工智能在科学研究中的核心技术,包括机器学习、深度学习、神经网络等。这些技术构成了AI for Science的基石,使得AI能够处理和分析
    发表于 10-14 09:16

    AI for Science:人工智能驱动科学创新》第一章人工智能驱动的科学创新学习心得

    ,无疑为读者铺设了一条探索人工智能AI)如何深刻影响并推动科学创新的道路。在阅读这一章后,我深刻感受到了人工智能技术在科学领域的广泛应用潜力以及其带来的革命性变化,以下是我个人的
    发表于 10-14 09:12

    risc-v在人工智能图像处理应用前景分析

    RISC-V和Arm内核及其定制的机器学习和浮点运算单元,用于处理复杂的人工智能图像处理任务。 四、未来发展趋势 随着人工智能技术的不断发展和普及,RISC-V在人工智能图像处理
    发表于 09-28 11:00

    人工智能ai 数电 模电 模拟集成电路原理 电路分析

    人工智能ai 数电 模电 模拟集成电路原理 电路分析 想问下哪些比较容易学 不过好像都是要学的
    发表于 09-26 15:24

    人工智能ai4s试读申请

    目前人工智能在绘画对话等大模型领域应用广阔,ai4s也是方兴未艾。但是如何有效利用ai4s工具助力科研是个需要研究的课题,本书对ai4s基本
    发表于 09-09 15:36

    名单公布!【书籍评测活动NO.44】AI for Science:人工智能驱动科学创新

    活的世界? 编辑推荐 《AI for Science:人工智能驱动科学创新》聚焦于人工智能与材料科学、生命科学、电子科学、能源科学、环境科学五大领域的交叉融合,通过深入浅出的语言和诸
    发表于 09-09 13:54

    报名开启!深圳(国际)通用人工智能大会将启幕,国内外大咖齐聚话AI

    8月28日至30日,2024深圳(国际)通用人工智能大会暨深圳(国际)通用人工智能产业博览会将在深圳国际会展中心(宝安)举办。大会以“魅力AI·无限未来”为主题,致力于打造全球通用人工智能
    发表于 08-22 15:00

    FPGA在人工智能中的应用有哪些?

    FPGA(现场可编程门阵列)在人工智能领域的应用非常广泛,主要体现在以下几个方面: 一、深度学习加速 训练和推理过程加速:FPGA可以用来加速深度学习的训练和推理过程。由于其高并行性和
    发表于 07-29 17:05

    人工智能深度学习的五大模型及其应用领域

    随着科技的飞速发展,人工智能AI)技术特别是深度学习在各个领域展现出了强大的潜力和广泛的应用价值。深度学习作为人工智能的一个核心分支,通过
    的头像 发表于 07-03 18:20 4432次阅读

    机器学习怎么进入人工智能

    人工智能(Artificial Intelligence,AI)是一门涉及计算机、工程、数学、哲学和认知科学等多个领域的交叉学科,旨在构建智能化计算机系统,使之能够自主感知、理解、
    的头像 发表于 04-04 08:41 313次阅读

    嵌入式人工智能的就业方向有哪些?

    于工业、农业、医疗、城市建设、金融、航天军工等多个领域。在新时代发展背景下,嵌入式人工智能已是大势所趋,成为当前最热门的AI商业化途径之一。
    发表于 02-26 10:17