0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

中国发展人工智能芯片产业的突破口到底在哪?

DPVg_AI_era 来源:未知 作者:李倩 2018-07-03 09:12 次阅读

美国杜克大学电子计算机工程系教授陈怡然、美国纽约州立大学教授陈逸中近日在《财经》撰文称,宽松的数据管理制度会让中国在人工智能芯片产业上占据非常有利的位置,从而达成“弯道超车”的目标。

过去数年之间,信息技术产业曾经接连兴起过几大热门领域,包括大数据(Bigdata)、物联网IoT)、工业4.0以及增强和虚拟现实(AR/VR)等。但直到以深度学习神经网络模型为基础的人工智能技术出现后,这几大热门领域才第一次被整合进人工智能这一更大的发展框架内。

当前,人工智能技术仍旧需要海量数据来训练神经网络模型,从而使得计算机能够代替人类从事各种数据处理与判断。飞速发展的物联网技术首先提供了大量的数据来源,经过设计和训练好的人工智能系统则提供了工业4.0最需要的智能控制系统,也为增强和虚拟现实场景的落地提供了数据处理的技术手段。

芯片是人工智能系统最关键的技术,中国发展人工智能芯片产业的突破口到底在哪?这是人们普遍关心的问题。

芯片产业是一门具有高集成性和高成本特性的科技产业,进入门槛非常之高。随着芯片制造技术进入“x纳米”(个位数纳米制程)时代,每个晶圆代工厂的造价动辄百亿美元起,运营与折旧成本惊人。

单个芯片的设计所需要的工程师数目从几十到数百不等,开发成本少则数千万美元,多则上亿美元,周期长达1年-2年。

但是,一个成功的芯片项目所带来的不仅仅是销售芯片本身的利润,还有伴随芯片设计、制造以及销售整套流程中产生的支撑产业与生态系统,从而带动软硬件发展、行业标准制定、知识产权销售、甚至相关的机械制造和化工等产业发展。

现代芯片设计,尤其是以“片上系统”(System-on-Chip,SoC)为主体的高端芯片,已经可以影响乃至引领某一产业走向及其战略发展,甚至遏制该产业的正常运行。

由于人工智能应用的场景千变万化,而所应用的算法更是有相当的差异,可以预期未来各项应用将有不同的定制化芯片,出现人工智能芯片百家争鸣的盛况。

人工智能芯片的另一大特点在于它所面对的是一个全新的、还未被大公司充分定义的新的业务场景。

即使是NVIDIA,也只是在云计算这一领域有一定的垄断地位。因此,人工智能芯片发展有着巨大的不确定性和机会。

人工智能芯片发展很像中国另一新兴芯片产业——比特币矿机上的发展历程:比特币矿机2010年初主要用的还是以CPU为主的芯片,但是从2012年起就逐渐过渡到以图形处理器GPU)为主,利用其强大的向量计算能力来采矿。两年以后的 2014年,大家开始通过算法优化并导入现场可编程逻辑阵列(FPGA)提升效能功耗比来达到更高挖矿效益。

时至今日,绝大多数的高采矿效益的矿机均是以定制化芯片为主,如比特大陆的蚂蚁矿机。

依照这一类似的发展趋势,我们可以期待2018年将是应用导向人工智能芯片开始跃进的一年。

中国可能弯道超车

GPU和CPU芯片设计注重通用性,但其高功耗、相对较低的单位效能以及高昂的价格并不适合于类似物联网或工业4.0这样的普及化应用。

应用导向的人工智能芯片是将抽象的神经网络算法以硬件方式加以固化来达到加速运算的效果。这样的设计有助于提升单位芯片面积上算力的密度,降低功耗和成本,从而有助于将人工智能系统更普遍地运用到各个场景。

但芯片的开发一般需要高质量的人才基础并有强大市场的需求来摊薄芯片开发的高昂成本:通常一款芯片的生命周期大约为三年,而真正产生利润的时间仅为12个-18个月。芯片企业要在这短短的时间内完成利润积累,进行下一代产品的成功开发与研制,进入新一轮的迭代周期。

经过近40年的高速发展,中国已经初步具备了一定规模的微电子人才储备和巨大的市场,正符合发展人工智能芯片的两项基本条件。

除此之外,中国还有一样更为突出的优势:大量使用数字化设备及人口数带来的庞大数据。在以应用为主体的开发概念下,每一个应用都需有各自对应的数据集来训练神经网络,有效数据的采集速度会是影响开发周期长短的最关键的因素之一。海量高质量的训练数据集可以帮助工程人员快速有效地训练神经网络,加速模型的定型,缩短人工智能芯片的设计周期。

在各国数据采集管理法规日趋收紧,尤其是欧盟最近出台通用数据保护规范(GDPR)的大环境下,宽松的数据管理制度会让中国在人工智能芯片产业上占据非常有利的位置,从而达成“弯道超车”的目标。

面临多重挑战

人工智能系统可以粗分为云端和终端两大应用。其硬件系统按照功能则可相应分为训练机和推理机两种。在过去较长一段时间,人工智能应用主要在云端,包括训练与推理两部分。云端系统的人工智能芯片能依算法与数据形态的不同来处理各式应用。

考虑到海量数据的处理需求,数据中心高昂的建设和运营成本,以及应用的多样性,云端人工智能芯片通常要求具有高集成性、高效能,以及高密度算力等特点,而且需要有一定的通用性。芯片对应各种应用场景所需的软件支持也是一项设计重点。

云端通用型人工智能芯片主要的开发难点在于如何针对业务所需的神经网络模型做相应的计算体系结构改良并同时考量通用性与应用导向设计之间的取舍。

这属于芯片开发中门槛较高的项目,而且所设计的人工智能芯片的规模通常较大,技术难度也较高。除了对应用场景有深刻理解之外,设计者也需要有长期芯片设计与流片经验的累积才能够保证拿出成熟的产品。

国内公司在经验上与国外其他领跑企业如英特尔高通、NVIDIA等应该说还有一段差距。但国内头部企业的迭代速度非常快,加上与代工厂(比如TSMC)和后端设计服务公司的紧密合作,对于先进工艺流片经验掌握的速度非常之快。国内寒武纪和比特大陆两家公司在未来的表现非常值得期待。预计再经过一两代的开发即能迎头赶上世界最前沿产品,并可望大量使用于数据中心。

以目前发展趋势来看,终端应用将会在未来2年-3年伴随着5G网络的大量普及有爆炸性成长。终端产品的应用范围非常广,许多从云端延伸至终端的应用将会是首先被导入的产品。

终端人工智能芯片并不如云端芯片般对通用性有较高需求,而是综合考虑功耗、计算能力、面积(PPA)在终端场景下的平衡。也因为如此,终端人工智能芯片并非一定需要采用最先进的制造工艺,成熟且低成本的工艺可能更适合普及化的应用。

终端应用中人工智能推理机芯片的应用可以粗略分成影像、声音和判断三大方向。由于应用与算法的碎片化与多样性,人工智能芯片在未来一段时间将会是一个以细分市场为主的产业结构。这一特点将会在商业模式上给传统芯片设计公司带来新的挑战和机会。

大量的应用需要更多种类,满足不同具体需求的知识产权,或是将知识产权定制化以应付各类不同需求。其中一种可能是走类似ARM的道路,通过提供基本知识产权给客户做针对具体应用场景的二次定制化开发。

人工智能的广泛应用也带来了庞大产业升级芯片需求,有可能扶植许多新创公司来提供各类应用专属的知识产权。

终端应用中训练机的需求也日渐增长,其主因是许多应用由于现场特殊性,需要本地训练或是云端训练不能反映时间的要求。无人驾驶系统、先进辅助驾驶系统和智能工厂等都有大量此类需求。

在终端系统中,训练机既有可能和推理机使用同一组人工智能芯片,有能以单独的芯片形式来达到更高效的训练效率。

由于终端的训练机将会对功耗和成本有更高的要求,因此终端训练机在通用性和应用导向设计之间的取舍将会更为困难。除了传统的芯片架构分析和设计技巧外,通过神经网络算法的改良与简化来降低设计复杂度也是近些年来研究的重点。

如前所述,芯片的生态系统是面对开发者最重要的一环,并直接影响工程人员对于芯片的接受度和所应用技术的普及度。

在软件设计上,编程语言和主流编程框架的支持能提高开发者意愿并能与其他平台接轨。同时,人工智能芯片的开发也是要与软件或算法的进步而同步更新,提供诸如更高效更灵活的知识产权。

在硬件设计上,未来人工智能芯片将逐步整合其他系统,注重如感测器、通讯和协同处理器等其他相关硬件的系统整合。

对于终端应用而言,整合后的平台将有可能达到系统各部分的高度协同,提高计算效率,增加产品的通用性。

此外,建立和维护使用者社群,提供类似于开源社区那样的开放式开发平台会使得整体开发速度提升,加快系统设计的迭代速度。最近有许多新创公司聚焦于降低硬件设计的门槛,以编程语言来取代硬件语言实现芯片设计,或是以软硬件协同设计来降低芯片设计的门槛,也有助于这一目的。

最后则是知识产权 (IP)的重复使用,尤其是功能和需求验证通过后的知识产权,将会是人工智能芯片在各种应用中快速布局的助力之一。

站在巨人和独角兽的肩膀上

人工智能应用对于算力的高要求使得我们在具体实践中必须将算法、数据与计算平台紧密结合,从而设计出针对具体需求的高度优化的计算平台。

因此,许多拥有数据和算法的传统软件及互联网公司如微软、谷歌、亚马逊等最近都纷纷跨界到芯片设计。

芯片行业的沙场老将们如英特尔、高通等也都看准了商机,以自身已有的生态系统和知识产权为基础快速布局于各种人工智能芯片应用中。

雨后春笋般出现的人工智能芯片独角兽更是遍布于各个开发层级,利用创新的科研成果与传统行业相竞争,形成了百家争鸣的局面。

我们粗略统计整理了国内外著名的人工智能芯片公司的主要技术方案和其所针对的应用场景,绝大多数公司尤其是初创公司纷纷看好在终端应用(尤其是终端推理)上的发展机会,以期待人工智能技术引入传统行业之后所带来的巨大商机。

在未来数年,人工智能技术的应用场景将会更加明确。赛道上的主流公司及其所代表的各种技术也会随之通过公司收购、兼并等手段逐渐融合至少数高度集成的技术平台。初创公司的重点也将转移至类似终端训练这样的新型应用场景。

在技术发展上,未来人工智能芯片则可能采用更为先进的制造工艺,甚至是诸如忆阻器或者神经形态计算这样全新的纳米器件和计算架构。这将成为AI芯片下一阶段竞争的风向标。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 人工智能
    +关注

    关注

    1792

    文章

    47354

    浏览量

    238837
  • AI芯片
    +关注

    关注

    17

    文章

    1889

    浏览量

    35079

原文标题:中国AI芯片有可能弯道超车

文章出处:【微信号:AI_era,微信公众号:新智元】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    人工智能发展需要新的芯片技术

    人工智能的繁荣发展需要新的芯片技术。   1997年,IBM的“深蓝”超级计算机打败了国际象棋世界冠军加里•卡斯帕罗夫。这是超级计算机技术的一次突破性展示,也首次让人们看到了高性能计算
    的头像 发表于 12-07 09:49 483次阅读
    <b class='flag-5'>人工智能</b><b class='flag-5'>发展</b>需要新的<b class='flag-5'>芯片</b>技术

    软通动力入选《人工智能数据标注产业图谱》

    近日,由中国信息通信研究院、中国人工智能产业发展联盟牵头,联合中国电信集团、沈阳市数据局、保定高新区等70多家单位编制完成并发布了《
    的头像 发表于 12-03 10:18 171次阅读

    嵌入式和人工智能究竟是什么关系?

    领域,如工业控制、智能家居、医疗设备等。 人工智能是计算机科学的一个分支,它研究如何使计算机具备像人类一样思考、学习、推理和决策的能力。人工智能发展历程可以追溯到上世纪50年代,经
    发表于 11-14 16:39

    《AI for Science:人工智能驱动科学创新》第6章人AI与能源科学读后感

    探讨了人工智能如何通过技术创新推动能源科学的进步,为未来的可持续发展提供了强大的支持。 首先,书中通过深入浅出的语言,介绍了人工智能在能源领域的基本概念和技术原理。这使得我对人工智能
    发表于 10-14 09:27

    《AI for Science:人工智能驱动科学创新》第一章人工智能驱动的科学创新学习心得

    的同时,确保其公正性、透明度和可持续性,是当前和未来科学研究必须面对的重要课题。此外,培养具备AI技能的科研人才,也是推动这一领域发展的关键。 4. 激发创新思维 阅读这一章,我被深深启发的是人工智能
    发表于 10-14 09:12

    多模态:智能座舱的新突破口

    智能汽车产业蓬勃发展的当下,智能座舱作为车辆的重要组成部分,正经历着前所未有的变革。清华大学智能绿色车辆与交通全国重点实验室的曹东璞教授在
    的头像 发表于 10-12 15:24 974次阅读

    risc-v在人工智能图像处理应用前景分析

    RISC-V和Arm内核及其定制的机器学习和浮点运算单元,用于处理复杂的人工智能图像处理任务。 四、未来发展趋势 随着人工智能技术的不断发展和普及,RISC-V在
    发表于 09-28 11:00

    SK海力士开始先进人工智能芯片生产

    SK海力士宣布,公司已正式踏入人工智能芯片生产的新阶段,批量生产业界领先的12层HBM3E芯片。这款芯片不仅代表了SK海力士在内存技术上的重
    的头像 发表于 09-26 14:24 338次阅读

    名单公布!【书籍评测活动NO.44】AI for Science:人工智能驱动科学创新

    每个交叉领域,本书通过案例进行了详尽的介绍,梳理了产业地图,并给出了相关政策启示。 《AI for Science:人工智能驱动科学创新》适合所有关注人工智能技术和产业
    发表于 09-09 13:54

    报名开启!深圳(国际)通用人工智能大会将启幕,国内外大咖齐聚话AI

    8月28日至30日,2024深圳(国际)通用人工智能大会暨深圳(国际)通用人工智能产业博览会将在深圳国际会展中心(宝安)举办。大会以“魅力AI·无限未来”为主题,致力于打造全球通用人工智能
    发表于 08-22 15:00

    RISC-V在中国发展机遇有哪些场景?

    的企业,从IP、芯片到开发板、工具链等各个环节都在积极布局RISC-V生态。这将有助于RISC-V在中国市场的快速发展和普及。 综上所述,RISC-V在中国
    发表于 07-29 17:14

    FPGA在人工智能中的应用有哪些?

    定制化的硬件设计,提高了硬件的灵活性和适应性。 综上所述,FPGA在人工智能领域的应用前景广阔,不仅可以用于深度学习的加速和云计算的加速,还可以针对特定应用场景进行定制化计算,为人工智能技术的发展提供有力支持。
    发表于 07-29 17:05

    商汤科技加入中国移动人工智能大模型评测联盟

    WAIC 2024期间,中国移动发起成立人工智能大模型评测联盟(弈衡),商汤科技作为初创成员受邀加入联盟。 人工智能实现突破发展,“AI+”
    的头像 发表于 07-12 14:20 675次阅读

    AI人工智能机器人产业--政府真正应承担的责任与角色

    AI人工智能机器人自人机大战至今已得到了前所未有的突破发展。世界上主要国家都把人工智能机器人产业作为首要目标进行战略规划布局推进。有些国家
    的头像 发表于 06-01 08:14 438次阅读
    AI<b class='flag-5'>人工智能</b>机器人<b class='flag-5'>产业</b>--政府真正应承担的责任与角色

    嵌入式人工智能的就业方向有哪些?

    嵌入式人工智能的就业方向有哪些? 在新一轮科技革命与产业变革的时代背景下,嵌入式人工智能成为国家新型基础建设与传统产业升级的核心驱动力。同时在此背景驱动下,众多名企也纷纷在嵌入式
    发表于 02-26 10:17