0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

ICLR 2018和ICRA 2018两个会议进行比较

DPVg_AI_era 来源:未知 作者:李倩 2018-07-03 10:37 次阅读

本文作者Alex Irpan是Google Brain机器人团队的软件工程师,他在不到一个月的时间里参加了两个学术会议:ICLR 2018和ICRA 2018,前者是一个深度学习会议,后者是机器人领域的会议。作者将这两个会议进行了比较。

ICLR 2018

从研究的角度来看,今年ICLR的一大重点是对抗性学习。

深度学习领域中最受欢迎的是生成对抗网络。不过,我在这里关注的更广,包括对抗样本和智能体竞争的环境。实际上,任何形式的极小极大优化问题都可以算作对抗性学习。

我不知道GAN是否真的很受欢迎,或者我的记忆带有选择性的偏见,因为我对这些方法很感兴趣。GAN给人的感觉很强大。评估GAN的一种方法是,你通过使用学习隐式成本而不是人为定义的成本来学习生成器。这使你能够适应生成器的能力,并可以定义手动解释可能很麻烦的成本。

当然,这会让你的问题更加复杂。但是如果你有足够强的优化和建模能力,那么隐式学习的成本将比其他方法能提供更清晰的图像。使用学习的组件替换一部分系统的一个好处是,优化和建模能力的进步适用于问题的更多方面。你正在提高学习成本函数的能力和最小化这些学习成本的能力。

从抽象点的观点来看,这涉及到具有表现力的、可优化的函数家族的能力,例如神经网络。Minimax优化不是一个新的想法。它已经存在很久了。新的东西是,深度学习可以让你在高维数据上建模和学习复杂的成本函数。对我来说,GAN的有趣之处不是图像生成,而是它们在复杂的数据(比如图像)上的概念证明。这个框架并不要求使用图像数据。

学习过程中还有其他部分可以用学习方法来替代,而不是用人为定义的方法,深度学习就是这样一种方法。这样做有意义吗?也许有。问题是,你用深度学习方法越多,就越难让每件事情都可以学习(learnable)。

最近Quanta Magazine上有一篇文章,Judea Pearl在上面表达了他的失望:深度学习只是学习相关性和曲线拟合,而这并不涵盖所有的智能。我同意Judea Pearl的观点,但作为深度学习的拥护者,我认为如果你把一个足够大的神经网络足够好地进行优化,你可能会学到一些看起来很像因果推理的东西,或者其他可以算作智能的东西。但这就接近哲学的领域了,所以我就讲到这里。

从与会者的角度来看,我喜欢这次会议有很多海报展示。这是我第一次参加ICLR。我之前参加过的ML会议是NIPS,NIPS给我的感觉是非常大。在NIPS上仔细阅读每一张海报感觉不太可行。在ICLR阅读完所有海报是可能的,尽管你不一定真想这样做。

我也很欣赏ICLR上企业招聘不像NIPS那样荒谬。在NIPS,有些公司会送奇怪的指尖陀螺和弹簧玩具.......在ICLR,我得到的最奇怪的东西是一双袜子,虽然奇怪,但也不是特别奇怪。

ICRA 2018

ICRA 2018是我参加的第一个机器人会议。我不知道该期待什么。我一开始做的是ML研究,后来转去研究机器人,所以我的兴趣更接近于学习控制,而不是制造新的机器人。我的理想设定是,我可以将真实世界的硬件视为抽象的。

再加上我对控制理论的贫乏理解,我对会议上的许多话题都不熟悉。尽管如此,还是有很多学习领域的论文,很高兴我去参加了这个会。

在我确实了解的研究中,我很惊讶有这么多的强化学习论文。看到它们中几乎没有人使用纯粹的无模型的RL,有点有趣。对于ICRA,如果你的论文提出的模型在真实世界的机器人上运行过,那么你被接受的可能性会大得多。这就迫使作者关注数据效率,因此对只做无模型的RL有极大的偏见。当我四处听演讲时,我不断地听到“我们将无模型强化学习与X结合在一起”,其中X是基于模型的RL,或者从人类的演示中学习,或者从运动规划中学习,或者从任何可以帮助探索问题的东西中学习。

从更广泛的层面看,这次会议是有实用性的。它虽然是一个研究会议,很多内容仍然是很推测性的,但它也觉得人们可以接受狭窄的、有针对性的解决方案。我认为这是不得不使用真正的硬件造成的另一个后果。如果需要实时运行模型,就不能忽略推理时间。如果需要从真正的机器人那里收集数据,就不能忽略数据效率。真正的硬件并不关心你的问题是什么。

(1)网络必须能够运行。

(2)无论您做何努力,赋于其何种优先级,都无法提高光的速度。

——RFC 1925

这让和我交谈过的许多ML研究人员感到惊讶,但这个机器人技术的会议并没有像NIPS / ICLR / ICML的人那样完全接受ML,部分原因是ML并不总是有效的。机器学习是一个解决方案,但它不能保证有意义。我的印象是,ICRA中只有少数人积极地希望ML失败。只要ML能证明有用,其他人都很乐意使用ML。在某些领域,它已经证明了自己。我看到的每一篇跟感知相关的论文都以这样或那样的方式使用CNN。但是很少有人用深度学习来进行控制,因为控制是有很多不确定因素的。

像ICLR一样, ICRA上也有很多公司举行招聘或摆设摊位。跟ICLR不同的是,这里的摊位显得更有趣。大多数公司都带了机器人来演示,这当然比听招聘演说更有趣。

在去年的NIPS上,我注意到ML公司的展位让我想起了Berkeley的职业招聘会。每一家科技公司都想招到Berkeley的应届毕业生。这就像一场军备竞赛,看谁能提供最好的东西和最好的免费食物。感觉他们的目标是尽可能地让自己看起来是最酷的公司,而不告诉你他们真正想雇佣你来做什么。机器人技术还没有走得很远。它在增长,但没有太多的宣传。

我参加了几个workshop,在那里人们谈论他们如何在现实世界中使用机器人,都很有趣。研究性会议倾向于集中讨论研究和网络,这使得人们很容易忘记研究可以有明确的、直接的经济价值。有一个农业机器人相关的,谈到使用计算机视觉检测杂草以及喷洒除草剂,这听起来是好事。使用更少除草剂,杀死更少作物,同时减缓除草剂抗性的发生。

Rodney Brooks也有一个类似的精彩演讲,他以Roomba为例,谈到了将机器人技术转化为消费产品所需的东西。他说,在设计Roomba时,他们先定了一个价格,然后将所有的功能控制在这个价格里面。结果是,几百美元的价格让你在传感器和硬件的选择上只有很小的余地,这就使得在设备上进行推断的能力有严格的限制。

组织方面,做得很好。会议中心紧邻印刷店,所以在注册时,组织者说,如果你在特定期限内用电子邮件发送PDF文件,他们会处理剩下的所有流程。你所要做的就是在网上为你的海报付钱,然后在会议上拿出来。所有的演示都是在演示室中进行的,每个演示室都配有白板和一个架子,你可以在上面放置笔记本电脑来播放视频

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 神经网络
    +关注

    关注

    42

    文章

    4774

    浏览量

    100893
  • 深度学习
    +关注

    关注

    73

    文章

    5507

    浏览量

    121273
  • 强化学习
    +关注

    关注

    4

    文章

    268

    浏览量

    11268

原文标题:谷歌大脑工程师给2018学术顶会划重点:对抗性学习+强化学习

文章出处:【微信号:AI_era,微信公众号:新智元】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    西门子TIA Portal如何比较两个浮点数相等

    概述: 由于浮点数的定义规则,导致浮点数不能通过二进制精确表示,所以在浮点数计算过程中,会出现两个值一样的浮点数进行比较相等计算时结果并不相等的情况。下面先设计一实例说明该问题,并给
    的头像 发表于 01-06 10:07 156次阅读
    西门子TIA Portal如何<b class='flag-5'>比较</b><b class='flag-5'>两个</b>浮点数相等

    从时域和频域两个角度对信号进行分析

    一般来说,我们会从时域和频域两个角度,分别对信号进行分析。 时域 时域是真实世界存在的域,按时间顺序呈现。例如,在某个时钟信号的时域图中,可以观察到两个重要的参数,波形的周期和上升沿: 时钟周期即
    的头像 发表于 11-19 10:18 1166次阅读
    从时域和频域<b class='flag-5'>两个</b>角度对信号<b class='flag-5'>进行</b>分析

    TPA2018D1与TPA2028D1的对比,有什么区别?

    我们目前使用 TPA2018D1 作为音频前置放大器。好像贵公司最近推出了“更新”版的 TPA2028D1。如果我们已经具备围绕 2018 的硬件开发的软件接口可以使用,那么是否可以在运行中直接使用 TPA2028D1,或在音频缓升特性之外,
    发表于 11-08 07:52

    NVIDIA在ICRA展示最新机器人研究

    在 日前举行的 IEEE 国际机器人和自动化大会(ICRA)上,几何织物(geometric fabrics)成为一热门的讨论话题。几何织物是 NVIDIA 机器人研究实验室成员与合作者共同提交的七篇论文的主题之一,并于 ICRA
    的头像 发表于 10-10 09:55 373次阅读

    红石比较种模式的作用

    输入端的两个红石信号进行比较,并根据比较结果输出不同的信号强度。 1.1 输入端信号强度相等 当输入端的两个红石信号强度相等时,
    的头像 发表于 09-05 09:17 523次阅读

    ad如何设置两个元器件的距离

    之间应保持的最小距离,以确保电路板的电气性能和制造过程的可靠性。以下是如何在AD中设置两个元器件之间距离的步骤: 一、进入规则设置界面 打开AD软件 :首先,确保你已经打开了Altium Designer软件,并加载了需要进行元器件间距设置的PCB设计文件。 访问规则设置
    的头像 发表于 09-02 15:31 7659次阅读

    触发器的两个稳定状态分别是什么

    触发器作为数字电路中的基本逻辑单元,具有两个稳定状态,这两个状态通常用于表示二进制数码中的0和1。
    的头像 发表于 08-12 11:01 1442次阅读

    比较两个输入电位,LM393的偏置电压有什么影响?

    比较两个输入电位的时候,LM393的偏置电压有什么影响
    发表于 08-12 08:28

    使用比较器TLV7041判断两个信号的大小,但输出未按预期进行是怎么回事?

    我现在需要使用比较器判断两个信号的大小,但输出未按预期进行(不能比较者大小)。如下图,U17是比较
    发表于 08-12 08:20

    双稳态触发器的两个基本性质是什么

    双稳态触发器(Bistable Trigger)是一种具有两个稳定状态的逻辑电路,广泛应用于数字电路设计中。它具有两个基本性质:记忆性和切换性。 一、双稳态触发器的基本概念 1.1 双稳态触发器
    的头像 发表于 08-11 10:08 746次阅读

    运放做比较两个输入相等怎么办

    比较器是运放的一种常见应用,主要用于比较两个模拟信号的大小。 当运放用作比较器时,其两个输入端分别为非反向输入端(+)和反向输入端(-)。
    的头像 发表于 07-10 10:34 1118次阅读

    两个PLC之间如何交互信号

    在工业自动化系统中,PLC(Programmable Logic Controller,可编程逻辑控制器)是核心的控制设备。在许多复杂的应用场景中,需要两个或多个PLC之间进行信号交互,以实现更高
    的头像 发表于 06-14 16:57 4554次阅读

    两个铜片可以形成原电池吗

    两个铜片本身不能形成原电池,因为原电池的工作原理依赖于两个不同电位的电极材料之间的氧化还原反应。
    的头像 发表于 05-21 16:23 1023次阅读

    arcgis中如何关联两个属性表

    在ArcGIS中,关联两个属性表是一重要的操作,可以通过此操作将两个表中的数据关联起来,以便进行分析和查询。下面是详细介绍如何在ArcGIS中实现属性表的关联。 首先,我们需要明确
    的头像 发表于 02-25 11:01 4321次阅读

    两个电位器地控制一变频器,如何接线?

    两个电位器地控制一变频器,如何接线? 接线方式如下: 1. 首先,明确需要使用的电器设备。在这个场景中,我们需要两个电位器(即可变电阻器)和一
    的头像 发表于 02-05 10:13 5464次阅读