0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

线性SVM分类器通过简单地计算决策函数

lviY_AI_shequ 来源:未知 作者:李倩 2018-07-12 15:19 次阅读

背后机制

这个章节从线性 SVM 分类器开始,将解释 SVM 是如何做预测的并且算法是如何工作的。如果你是刚接触机器学习,你可以跳过这个章节,直接进入本章末尾的练习。等到你想深入了解 SVM,再回头研究这部分内容。

首先,关于符号的约定:在第 4 章,我们将所有模型参数放在一个矢量θ里,包括偏置项θ0,θ1到θn的输入特征权重,和增加一个偏差输入x0 = 1到所有样本。在本章中,我们将使用一个不同的符号约定,在处理 SVM 上,这更方便,也更常见:偏置项被命名为b,特征权重向量被称为w,在输入特征向量中不再添加偏置特征。

决策函数和预测

线性 SVM 分类器通过简单地计算决策函数

来预测新样本的类别:如果结果是正的,预测类别ŷ是正类,为 1,否则他就是负类,为 0。见公式 5-2

图 5-12 显示了和图 5-4 右边图模型相对应的决策函数:因为这个数据集有两个特征(花瓣的宽度和花瓣的长度),所以是个二维的平面。决策边界是决策函数等于 0 的点的集合,图中两个平面的交叉处,即一条直线(图中的实线)

虚线表示的是那些决策函数等于 1 或 -1 的点:它们平行,且到决策边界的距离相等,形成一个间隔。训练线性 SVM 分类器意味着找到w值和b值使得这一个间隔尽可能大,同时避免间隔违规(硬间隔)或限制它们(软间隔)

训练目标

看下决策函数的斜率:它等于权重向量的范数。如果我们把这个斜率除于 2,决策函数等于 ±1 的点将会离决策边界原来的两倍大。换句话,即斜率除于 2,那么间隔将增加两倍。在图 5-13 中,2D 形式比较容易可视化。权重向量w越小,间隔越大。

所以我们的目标是最小化,从而获得大的间隔。然而,如果我们想要避免间隔违规(硬间隔),对于正的训练样本,我们需要决策函数大于 1,对于负训练样本,小于 -1。若我们对负样本(即)定义,对正样本(即)定义,那么我们可以对所有的样本表示为

因此,我们可以将硬间隔线性 SVM 分类器表示为公式 5-3 中的约束优化问题

为了获得软间隔的目标,我们需要对每个样本应用一个松弛变量(slack variable) 表示了第i个样本允许违规间隔的程度。我们现在有两个不一致的目标:一个是使松弛变量尽可能的小,从而减小间隔违规,另一个是使1/2 w·w尽量小,从而增大间隔。这时C超参数发挥作用:它允许我们在两个目标之间权衡。我们得到了公式 5-4 的约束优化问题。

二次规划

硬间隔和软间隔都是线性约束的凸二次规划优化问题。这些问题被称之为二次规划(QP)问题。现在有许多解决方案可以使用各种技术来处理 QP 问题,但这超出了本书的范围。一般问题的公式在公式 5-5 给出。

对偶问题

给出一个约束优化问题,即原始问题(primal problem),它可能表示不同但是和另一个问题紧密相连,称为对偶问题(Dual Problem)。对偶问题的解通常是对原始问题的解给出一个下界约束,但在某些条件下,它们可以获得相同解。幸运的是,SVM 问题恰好满足这些条件,所以你可以选择解决原始问题或者对偶问题,两者将会有相同解。公式 5-6 表示了线性 SVM 的对偶形式(如果你对怎么从原始问题获得对偶问题感兴趣,可以看下附录 C)

一旦你找到最小化公式的向量α(使用 QP 解决方案),你可以通过使用公式 5-7 的方法计算w和b,从而使原始问题最小化。

当训练样本的数量比特征数量小的时候,对偶问题比原始问题要快得多。更重要的是,它让核技巧成为可能,而原始问题则不然。那么这个核技巧是怎么样的呢?

核化支持向量机

假设你想把一个 2 次多项式变换应用到二维空间的训练集(例如卫星数据集),然后在变换后的训练集上训练一个线性SVM分类器。公式 5-8 显示了你想应用的 2 次多项式映射函数ϕ。

注意到转换后的向量是 3 维的而不是 2 维。如果我们应用这个 2 次多项式映射,然后计算转换后向量的点积(见公式 5-9),让我们看下两个 2 维向量a和b会发生什么。

转换后向量的点积等于原始向量点积的平方:

Mercer 定理

根据 Mercer 定理,如果函数K(a, b)满足一些 Mercer 条件的数学条件(K函数在参数内必须是连续,对称,即K(a, b)=K(b, a),等),那么存在函数ϕ,将a和b映射到另一个空间(可能有更高的维度),有。所以你可以用K作为核函数,即使你不知道ϕ是什么。使用高斯核(Gaussian RBF kernel)情况下,它实际是将每个训练样本映射到无限维空间,所以你不需要知道是怎么执行映射的也是一件好事。

注意一些常用核函数(例如 Sigmoid 核函数)并不满足所有的 Mercer 条件,然而在实践中通常表现得很好。

我们还有一个问题要解决。公式 5-7 展示了线性 SVM 分类器如何从对偶解到原始解,如果你应用了核技巧那么得到的公式会包含。事实上,w必须和有同样的维度,可能是巨大的维度或者无限的维度,所以你很难计算它。但怎么在不知道w的情况下做出预测?好消息是你可以将公式 5-7 的w代入到新的样本的决策函数中,你会得到一个在输入向量之间只有点积的方程式。这时,核技巧将派上用场,见公式 5-11

注意到支持向量才满足α(i)≠0,做出预测只涉及计算为支持向量部分的输入样本的点积,而不是全部的训练样本。当然,你同样也需要使用同样的技巧来计算偏置项b,见公式 5-12

如果你开始感到头痛,这很正常:因为这是核技巧一个不幸的副作用

在线支持向量机

在结束这一章之前,我们快速地了解一下在线 SVM 分类器(回想一下,在线学习意味着增量地学习,不断有新实例)。对于线性SVM分类器,一种方式是使用梯度下降(例如使用SGDClassifire)最小化代价函数,如从原始问题推导出的公式 5-13。不幸的是,它比基于 QP 方式收敛慢得多。

代价函数第一个和会使模型有一个小的权重向量w,从而获得一个更大的间隔。第二个和计算所有间隔违规的总数。如果样本位于“街道”上和正确的一边,或它与“街道”正确一边的距离成比例,则间隔违规等于 0。最小化保证了模型的间隔违规尽可能小并且少。

Hinge 损失

函数max(0, 1–t)被称为 Hinge 损失函数(如下)。当t≥1时,Hinge 值为 0。如果t<1,它的导数(斜率)为 -1,若t>1,则等于0。在t=1处,它是不可微的,但就像套索回归(Lasso Regression)(参见 130 页套索回归)一样,你仍然可以在t=0时使用梯度下降法(即 -1 到 0 之间任何值)

我们也可以实现在线核化的 SVM。例如使用“增量和递减 SVM 学习”或者“在线和主动的快速核分类器”。但是,这些都是用 MatlabC++ 实现的。对于大规模的非线性问题,你可能需要考虑使用神经网络(见第二部分)

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 分类器
    +关注

    关注

    0

    文章

    152

    浏览量

    13174
  • 机器学习
    +关注

    关注

    66

    文章

    8377

    浏览量

    132406
  • 数据集
    +关注

    关注

    4

    文章

    1205

    浏览量

    24641
收藏 人收藏

    评论

    相关推荐

    【Firefly RK3399试用体验】之结项——KNN、SVM分类在SKlearn机器学习工具集中运用

    ,分别标记为粉红、蓝色和绿色,然后把训练数据及分类传入KNN分类来训练KNN分类,最后就可以将测试数据输入KNN
    发表于 07-20 22:26

    线性分类

    分值的映射。线性分类:在本模型中,我们从最简单的概率函数开始,一个线性映射:在上面的公式中,假
    发表于 10-09 09:40

    数据SVM分类的构建

    16SVM - 代码案例三 - 不同SVM函数效果比较
    发表于 05-22 16:04

    SVM→2决策函数的引出是什么

    SVM→2决策函数的引出
    发表于 06-15 12:02

    介绍支持向量机与决策树集成等模型的应用

    本文主要介绍支持向量机、k近邻、朴素贝叶斯分类决策树、决策树集成等模型的应用。讲解了支持向量机SVM线性与非
    发表于 09-01 06:57

    SVM的相关资料分享

    Jupyter中重新做一遍。并将例子代码中采用多项式分类函数、高斯核函数对鸢尾花、月亮数据集进行SVM训练所得到最终分类
    发表于 01-13 08:00

    目标识别中SVM线性可分性研究

    该文主要研究了目标识别中SVM 线性可分的充要条件以及线性不可分时软间隔分类的内涵。首先给出了SVM 特征空间
    发表于 11-21 11:49 9次下载

    基于四叉树的分形图像编码中的剖分决策函数

    基于四叉树的分形图像编码中的剖分决策函数 为了得到可变的位率,在分形图像压缩中经常采用四叉树分割方法。该文提出了一种基于模糊积分的剖分决策函数——
    发表于 02-22 14:20 18次下载

    采用SVM的网页分类方法研究

    支持向量机SVM一种可训练的机器学习方法,它对小样本进行学习,得到一个分类函数,冉将待测文本代入此分类函数中判定文本所属的类别。
    发表于 11-08 11:42 3次下载

    支持向量机(SVM)的定义、分类及工作流程图详解

    SVM可以做线性分类、非线性分类线性回归等,相比逻辑回归、
    的头像 发表于 11-30 10:59 8.4w次阅读
    支持向量机(<b class='flag-5'>SVM</b>)的定义、<b class='flag-5'>分类</b>及工作流程图详解

    基于信息浓缩的隐私保护分类方法

    支持向量机(SVM)的分类决策过程涉及到对原始训练样本的学习,容易导致数据中隐私信息的泄漏。为解决上述问题,提出一种基于信息浓缩的隐私保护分类方法IC-
    发表于 12-23 11:12 0次下载
    基于信息浓缩的隐私保护<b class='flag-5'>分类</b>方法

    基于SVM和模糊K均值算法的部位外观模型

    基于SVM和模糊K均值算法的部位外观模型。部位外观模型由两个分类构成,线性SVM分类器用于判断
    发表于 01-08 15:13 0次下载

    SVM分类实验的资料和工程文件资料免费下载

    一、实验目的 1、掌握线性主持向量机(SVM分类。 2、掌握基于高斯核的SVM分类
    发表于 06-17 08:00 0次下载

    可检测网络入侵的IL-SVM-KNN分类

    为满足入侵检测的实时性和准确性要求,通过结合支持向量机(SVM)和K最近邻(KNN)算法设ⅡL-SM-KNN分类,并采用平衡k维树作为数据结构提升执行速度。训练阶段应用增量学习思想并
    发表于 04-29 15:55 7次下载
    可检测网络入侵的IL-<b class='flag-5'>SVM</b>-KNN<b class='flag-5'>分类</b><b class='flag-5'>器</b>

    基于SVM分类检测的公路车辆智能跟踪技术

    基于SVM分类检测的公路车辆智能跟踪技术
    发表于 06-22 15:58 18次下载