机器学习算法擅长发现大数据内的复杂模式,因此研究人员通常利用它们作出预测。如今,科学家正在推动这种新兴技术超越发现相关性,帮助揭开隐藏的因果关系并且驱动科学发现。
在美国南佛罗里达大学(USF),研究人员将机器学习技术融合进其研究蛋白质的工作。正如他们在美国物理联合会(AIP)出版集团所属《化学物理学报》上所报告的,其面临的主要挑战之一是缺少在从分子动力学模拟获得的数据中辨别因果关系的方法。
“蛋白质可被看作执行一系列任务的纳米尺度机器。不过,蛋白质何时以及在哪里执行特定任务是由细胞通过各种刺激控制的”USF生物物理学系副教授Sameer Varma介绍说,这些刺激同蛋白质相互作用,不断地将其“打开”或者“关闭”,甚至能改变其速度和力量。
在大多数蛋白质中,生物刺激同距离开展相应任务的区域相对较远的蛋白质位点发生相同作用,而这需要信号通路。“这种通过远程控制开启蛋白质的方式被称为变构通路。但具体细节仍不明确。”Varma表示。
他和同事认为,机器学习方法能发挥重要作用。“开发并利用机器学习技术将使我们得以发现蛋白质动力学数据中的因果关系,并且最终解决蛋白质变构效应中一些非常基础的问题。”Varma介绍说,他们的一个关键发现是在蛋白质受刺激部位被启动的信号似乎在向远离该位点的地方移动时逐渐变弱。这令人震惊,因为科学家此前并未在蛋白质位点之间的热运动耦合中观察到这种距离上的依赖性。
该团队的工作展示了一种机器学习方法被用于辨别数据内因果关系的方式。此外,Varma表示,“这些数据还让我们得以填补蛋白质变构效应中的关键空白。最终,当我们的方法被应用于很多具有药物意义的蛋白质时,我们期望能发现更多机械学细节,以揭示恢复疾病状态下蛋白质活动的新干预策略”。
未来智能实验室是人工智能学家与科学院相关机构联合成立的人工智能,互联网和脑科学交叉研究机构。
未来智能实验室的主要工作包括:建立AI智能系统智商评测体系,开展世界人工智能智商评测;开展互联网(城市)云脑研究计划,构建互联网(城市)云脑技术和企业图谱,为提升企业,行业与城市的智能水平服务。
-
互联网
+关注
关注
54文章
11163浏览量
103387 -
AI
+关注
关注
87文章
30996浏览量
269295 -
智能系统
+关注
关注
2文章
394浏览量
72469 -
机器学习
+关注
关注
66文章
8422浏览量
132714
原文标题:机器学习技术或揭示蛋白质动力学数据中因果关系
文章出处:【微信号:AItists,微信公众号:人工智能学家】欢迎添加关注!文章转载请注明出处。
发布评论请先 登录
相关推荐
评论